110 research outputs found
A memristive non-smooth dynamical system with coexistence of bimodule periodic oscillation
© 2022 Elsevier GmbH. All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1016/j.aeue.2022.154279In order to explore the bursting oscillations and the formation mechanism of memristive non-smooth systems, a third-order memristor model and an external periodic excitation are introduced into a non-smooth dynamical system, and a novel 4D memristive non-smooth system with two-timescale is established. The system is divided into two different subsystems by a non-smooth interface, which can be used to simulate the scenario where a memristor encounters a non-smooth circuit in practical application circuits. Three different bursting patterns and bifurcation mechanisms are analyzed with the time series, the corresponding phase portraits, the equilibrium bifurcation diagrams, and the transformed phase portraits. It is pointed that not only the stability of the equilibrium trajectory but also the non-smooth interface may influence the bursting phenomenon, resulting in the sudden jumping of the trajectory and non-smooth bifurcation at the non-smooth interface. In particular, the coexistence of bimodule periodic oscillations at the non-smooth interface can be observed in this system. Finally, the correctness of the theoretical analysis is well verified by the numerical simulation and Multisim circuit simulation. This paper is of great significance for the future analysis and engineering application of the memristor in non-smooth circuits.Peer reviewe
Facile synthesis, structure and visible light photocatalytic activity of recyclable ZnFe2O4/TiO2
A kind of sponge-like ZnFe2O4/TiO2 composite was facilely synthesized by a solution combustion method. The physicochemical properties, including the crystalline phase, surface morphology, spectral response, photogenerated charge carriers' separation and transfer efficiency, were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, N-2 adsorption/desorption isotherms, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy and photoluminescence spectroscopy techniques and analyzed to interpret the relationship between the structure and photocatalytic activity. The sponge-like morphology promotes the adsorption of reaction species as well as functions as a good light harvesting structure for the enhancement of spectral utilization. The hetero-junction effectively inhibited the recombination of photogenerated charge carriers. With these synergistic effects, the degradation rate of methylene blue on ZnFe2O4/TiO2 was up to 93.2% under visible light irradiation and remained stable even after five consecutive reaction runs. Moreover, owing to the magnetic property, ZnFe2O4/TiO2 can be recycled easily. Additionally, a photocatalytic mechanism of ZnFe2O4/TiO2 was proposed. (C) 2014 Elsevier B. V. All rights reserved
A locally active discrete memristor model and its application in a hyperchaotic map
© 2022 Springer Nature Switzerland AG. Part of Springer Nature. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1007/s11071-021-07132-5The continuous memristor is a popular topic of research in recent years, however, there is rare discussion about the discrete memristor model, especially the locally active discrete memristor model. This paper proposes a locally active discrete memristor model for the first time and proves the three fingerprints characteristics of this model according to the definition of generalized memristor. A novel hyperchaotic map is constructed by coupling the discrete memristor with a two-dimensional generalized square map. The dynamical behaviors are analyzed with attractor phase diagram, bifurcation diagram, Lyapunov exponent spectrum, and dynamic behavior distribution diagram. Numerical simulation analysis shows that there is significant improvement in the hyperchaotic area, the quasi-periodic area and the chaotic complexity of the two-dimensional map when applying the locally active discrete memristor. In addition, antimonotonicity and transient chaos behaviors of system are reported. In particular, the coexisting attractors can be observed in this discrete memristive system, resulting from the different initial values of the memristor. Results of theoretical analysis are well verified with hardware experimental measurements. This paper lays a great foundation for future analysis and engineering application of the discrete memristor and relevant the study of other hyperchaotic maps.Peer reviewedFinal Accepted Versio
Mechanism Study of Photocatalytic Degradation of Gaseous Toluene on TiO2 with Weak-Bond Adsorption Analysis Using In Situ Far Infrared Spectroscopy
The development of far infrared spectroscopy offers a powerful method for comprehensive study in adsorption structure and photocatalytic degradation mechanism of photocatalysis. This study presented an improved in situ diffuse reflectance infrared Fourier transform spectroscopy technique in far infrared region for investigation of weak-bond adsorption and photocatalytic degradation of gaseous toluene on the surface of TiO2. It was found that toluene tends to be adsorbed on the hydroxyl group via three possible sites, the ortho-, meta-, and para-adsorption site, instead of ipso-structure. The methyl group of toluene is consumed first during the process of toluene photocatalytic degradation. Based on these, a reaction route for the photocatalytic degradation of gaseous toluene on TiO2 surface was proposed
DRIFTS Evidence for Facet-Dependent Adsorption of Gaseous Toluene on TiO2 with Relative Photocatalytic Properties
Effective adsorption is of great importance to the photocatalytic degradation of volatile organic compounds. Herein, we succeeded in the preparation of anatase TiO2 with clean dominant {001} and {101} facets. By using in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) equipped with a homemade reaction system and a coupling gas-dosing system, we found that TiO2 with dominant {001} facets exhibits higher toluene adsorption capacity than TiO2 with dominant {101} facets, which may be attributed to the different number of unsaturated 5c-Ti capable of forming the main active adsorption sites (terminal Ti-OH species). TiO2 with dominant {001} facets shows a significantly high photocatalytic degradation performance, with its degradation rate being 6 times higher than that of dominant {101} facets. Combined with simulation results, it is suggested that the synergetic effects of the formation of specific active adsorption sites, the low adsorption energy for toluene, and preservation of the free molecularly adsorbed water on the surface promote the degradation of gaseous toluene on the dominant {001} facets. This study exemplifies that the facet-dependent adsorption of volatile organic compounds is one of the most important factors to effectively engineer photocatalysts for air purification
Nuclear Receptor Coactivator 2 Promotes Human Breast Cancer Cell Growth by Positively Regulating the MAPK/ERK Pathway
As a member of the p160 steroid receptor coactivator (SRC) family, nuclear receptor coactivator 2 (NCOA2) is known to play essential roles in many physiological and pathological processes, including development, endocrine regulation, and tumorigenesis. However, the biological function of NCOA2 in breast cancer is not fully understood. We found that the copy number of the NCOA2 gene was frequently amplified in four breast cancers datasets, varying from 6 to 10%, and the mRNA levels of NCOA2 were also upregulated in 11% of the sequenced cases/patients (TCGA provisional dataset). Next, we confirmed that NCOA2 silencing significantly suppressed cell proliferation in different breast cancer cell lines, by inducing cell cycle arrest and apoptosis. Mechanistically, whole-transcriptome sequencing (RNA-Seq) analysis showed that NCOA2 depletion leads to downregulation of the MAPK/ERK signaling cascade, possibly via downregulating NCOA2's downstream target RASEF. In conclusion, our results suggest NCOA2 as a potential target of therapeutics against breast cancer
New genus and species of lice in the Oxylipeurus-complex (Phthiraptera, Ischnocera, Philopteridae), with an overview of the distribution of ischnoceran chewing lice on galliform hosts
Here, we describe a new genus of lice (Phthiraptera, Ischnocera) in the Oxylipeurus-complex, parasitising galliform hosts in the genera Tragopan Cuvier, 1829. This genus, Pelecolipeurus gen. nov., is separated from other members of the complex by the unique shape of the male subgenital plate and stylus, the male genitalia and other characters. The only previously-known species in the genus is Lipeurus longus Piaget, 1880, which is here tentatively re-described as Pelecolipeurus longus (Piaget, 1880), based on specimens from a non-type host, Tragopan temminckii (Gray, 1831). In addition, we describe a new species, Pelecolipeurus fujianensis sp. nov., based on specimens from Tragopan caboti (Gould, 1857). An overview of the distribution patterns of ischnoceran lice on galliforms is presented, which suggests that host phylogeny, host biogeography and host biotope, as well as elevation of host range, may all be important factors that have structured louse communities on landfowl. We transfer the genus Afrilipeurus from the Oxylipeurus-complex to the Lipeurus-complex and include an emended key to the Oxylipeurus-complex
Construction of a novel anoikis-related prognostic model and analysis of its correlation with infiltration of immune cells in neuroblastoma
BackgroundAnoikis resistance (AR) plays an important role in the process of metastasis, which is an important factor affecting the risk stage of neuroblastoma (NB). This study aims to construct an anoikis-related prognostic model and analyze the characteristics of hub genes, important pathways and tumor microenvironment of anoikis-related subtypes of NB, so as to provide help for the clinical diagnosis, treatment and research of NB.MethodsWe combined transcriptome data of GSE49710 and E-MTAB-8248, screened anoikis-related genes (Args) closely related to the prognosis of NB by univariate cox regression analysis, and divided the samples into anoikis-related subtypes by consistent cluster analysis. WGCNA was used to screen hub genes, GSVA and GSEA were used to analyze the differentially enriched pathways between anoikis-related subtypes. We analyzed the infiltration levels of immune cells between different groups by SsGSEA and CIBERSORT. Lasso and multivariate regression analyses were used to construct a prognostic model. Finally, we analyzed drug sensitivity through the GDSC database.Results721 cases and 283 Args were included in this study. All samples were grouped into two subtypes with different prognoses. The analyses of WGCNA, GSVA and GSEA suggested the existence of differentially expressed hub genes and important pathways in the two subtypes. We further constructed an anoikis-related prognostic model, in which 15 Args participated. This model had more advantages in evaluating the prognoses of NB than other commonly used clinical indicators. The infiltration levels of 9 immune cells were significantly different between different risk groups, and 13 Args involved in the model construction were correlated with the infiltration levels of immune cells. There was a relationship between the infiltration levels of 6 immune cells and riskscores. Finally, we screened 15 drugs with more obvious effects on NB in high-risk group.ConclusionThere are two anoikis-related subtypes with different prognoses in the population of NB. The anoikis-related prognostic model constructed in this study can accurately predict the prognoses of children with NB, and has a good guiding significance for clinical diagnosis, treatment and research of NB
Poor outcome in congenital mesoblastic nephroma with TPM3::NTRK1 fusion: a case report from multi-disciplinary treatment to molecular tumor board
Background: Congenital mesoblastic nephroma (CMN) is a rare renal tumor with good prognosis in children; however, cellular CMN is a special subtype with poor prognosis. The ETV6 fusion gene has been found in some cellular CMNs, whereas CMNs with TPM3::NTRK1 fusion gene have not been reported. This study aims to share the progression and treatment of a case of CMNs with TPM3::NTRK1 fusion gene, in order to provide experience for the diagnosis and treatment of such specific diseases. Case Description: We report a case of CMN with TPM3::NTRK1 fusion gene and a 3-year course of disease that originated during the fetal period. The child experienced rapid tumor progression 22 months after birth, followed by tumor recurrence 3 months after complete resection of CMN. Although traditional chemotherapy could not prevent the tumor progression. The tropomyosin receptor kinase (TRK) inhibitor larotrectinib resulted in significant inhibitory effects on metastatic lesions in the lungs, liver, and peritoneum. However, the patient ultimately died as the tumor became resistant to larotrectinib. Conclusions: CMN, is a rare pediatric renal tumor that warrant prompt surgical management. A watchful waiting approach may allow for aggressive growth of metastatic disease, as seen in this case of cellular CMN with TPM3::NTRK1 fusion gene, TRK inhibitors can play significant roles in the treatment of CMN with TPM3::NTRK1 fusion gene, but we still need to pay attention to the phenomenon of drug resistance to larotrectinib caused by site mutations of TRKA
- …