7 research outputs found
CASES-99: a comprehensive investigation of the stable nocturnal boundary layer
The Cooperative Atmosphere-Surface Exchange Study—1999 (CASES-99) refers to a field experiment carried out in southeast Kansas during October 1999 and the subsequent program of investigation. Comprehensive data, primarily taken during the nighttime but typically including the evening and morning transition, supports data analyses, theoretical studies, and state-of-the-art numerical modeling in a concerted effort by participants to investigate four areas of scientific interest. The choice of these scientific topics is motivated by both the need to delineate physical processes that characterize the stable boundary layer, which are as yet not clearly understood, and the specific scientific goals of the investigators. Each of the scientific goals should be largely achievable with the measurements taken, as is shown with preliminary analysis within the scope of three of the four scientific goals. Underlying this effort is the fundamental motivation to eliminate deficiencies in surface layer and turbulent diffusion parameterizations in atmospheric models, particularly where the Richardson number exceeds 0.25. This extensive nocturnal boundary layer (NBL) dataset is available to the scientific community at large, and the CASES-99 participants encourage all interested parties to utilize it.Carmen Nappo acknowledges the support of the U.S. Army Research Laboratory under Grant MIPROB-NOAA007. JS and SB acknowledge the support of Army Research Office Grant DAAD 1999- 1-0320, National Science Foundation Grant ATM-9906637.
JC and ET acknowledge the Spanish Commission for Science and Technology through Projects CLI97-0343 and CLI99-1326- E
Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements
In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500 nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500 nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675 nm was higher than 80% for all sites during January 2013. The absorption AOD675 nm at rural sites was only about 0.01 during pollution periods, while ~0.03–0.07 and 0.01–0.03 during pollution and non-pollution periods at other sites, respectively.This work is financially supported by grants from the National Key Project of Basic Research (2011CB403401 and 2014CB441201), the Project (41005086, 41275167 and 41130104) supported by NSFC, the Strategic Priority Research Programme of the Chinese Academy of Sciences (Grant no. XDA05100301), CAMS Basis Research Project (2012Y02 and 2013Z007). Cimel master calibration of CARSNET was performed at the AERONET-EUROPE calibration center (LOA and AEMET-Tenerife), supported by ACTRIS (European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254
Climatology of aerosol radiative properties in the free troposphere
ComunicaciĂłn presentada en: Symposium on Atmospheric Chemistry and Physics at Mountain Sites celebrado del 8 al 10 de junio de 2010 en Interlaken, Suiza
Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements [Discussion paper]
In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500 nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500 nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675 nm was higher than 80% for all sites during January 2013. The absorption AOD675 nm at rural sites was only about 0.01 during pollution periods, while ~0.03–0.07 and 0.01–0.03 during pollution and non-pollution periods at other sites, respectively.This work is financially supported by grants from the National Key Project of Basic Research (2011CB403401 and 2014CB441201), the Project (41005086, 41275167 and 41130104) supported by NSFC, the Strategic Priority Research Programme of the Chinese Academy of Sciences (Grant no. XDA05100301), CAMS Basis Research Project (2012Y02 and 2013Z007). Cimel master calibration of CARSNET was performed at the AERONET-EUROPE calibration center (LOA and AEMET-Tenerife), supported by ACTRIS (European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 262254
Characterization and intercomparison of aerosol absorption photometers: result of two intercomparison workshops [Discussion paper]
Absorption photometers for real time application have been available since the 1980s, but the use of filter-based instruments to derive information on aerosol properties (absorption coefficient and black carbon, BC) is still a matter of debate. Several workshops have been conducted to investigate the performance of individual instruments over the intervening years. Two workshops with large sets of aerosol absorption photometers were conducted in 2005 and 2007. The data from these instruments were corrected using existing methods before further analysis. The inter-comparison shows a large variation between the responses to absorbing aerosol particles for different types of instruments. The unit to unit variability between instruments can be up to 30% for Particle Soot Absorption Photometers (PSAPs) and Aethalometers. Multi Angle Absorption Photometers (MAAPs) showed a variability of less than 5%. Reasons for the high variability were identified to be variations in sample flow and spot size. It was observed that different flow rates influence system performance with respect to response to absorption and instrumental noise. Measurements with non absorbing particles showed that the current corrections of a cross sensitivity to particle scattering are not sufficient. Remaining cross sensitivities were found to be a function of the total particle load on the filter. The large variation between the response to absorbing aerosol particles for different types of instruments indicates that current correction functions for absorption photometers are not adequate.The work described in this paper was supported by the EU FP6 Integrated
Infrastructures Initiatives (I3) project EUSAAR (European Supersites for Atmospheric
Aerosol Research, project FP6-026140), with the EU FP6 Network of Excellence ACCENT (Atmospheric Composition Change: A European Network, project GOCE-CT-2004-505337) and
the WMO GAW (Global Atmosphere Watch) program