7,715 research outputs found
Human motion tracking based on complementary Kalman filter
Miniaturized Inertial Measurement Unit (IMU) has been widely used in many motion capturing applications. In order to overcome stability and noise problems of IMU, a lot of efforts have been made to develop appropriate data fusion method to obtain reliable orientation estimation from IMU data. This article presents a method which models the errors of orientation, gyroscope bias and magnetic disturbance, and compensate the errors of state variables with complementary Kalman filter in a body motion capture system. Experimental results have shown that the proposed method significantly reduces the accumulative orientation estimation errors
Molecular Theory of Hydrophobic Effects: ``She is too mean to have her name repeated.''
This paper reviews the molecular theory of hydrophobic effects relevant to
biomolecular structure and assembly in aqueous solution. Recent progress has
resulted in simple, validated molecular statistical thermodynamic theories and
clarification of confusing theories of decades ago. Current work is resolving
effects of wider variations of thermodynamic state, e.g. pressure denaturation
of soluble proteins, and more exotic questions such as effects of surface
chemistry in treating stability of macromolecular structures in aqueous
solutionComment: submitted to Ann. Rev. Phys. Chem., 31 pages, 245 references, 2
figure
Low energy laser light (632.8 nm) suppresses amyloid-β peptide-induced oxidative and inflammatory responses in astrocytes
Oxidative stress and inflammation are important processes in the progression of Alzheimer's disease (AD). Recent studies have implicated the role of amyloid β-peptides (Aβ) in mediating these processes. In astrocytes, oligomeric Aβ induces the assembly of NADPH oxidase complexes resulting in its activation to produce anionic superoxide. Aβ also promotes production of pro-inflammatory factors in astrocytes. Since low energy laser has previously been reported to attenuate oxidative stress and inflammation in biological systems, the objective of this study was to examine whether this type of laser light was able to abrogate the oxidative and inflammatory responses induced by Aβ. Primary rat astrocytes were exposed to Helium-Neon laser (λ=632.8 nm), followed by the treatment with oligomeric Aβ. Primary rat astrocytes were used to measure Aβ-induced production of superoxide anions using fluorescence microscopy of dihydroethidium (DHE), assembly of NADPH oxidase subunits by the colocalization between the cytosolic p47phox subunit and the membrane gp91phox subunit using fluorescent confocal microscopy, phosphorylation of cytosolic phospholipase A2 (cPLA2), and expressions of pro-inflammatory factors including interleukin-1β (IL-1β) and inducible nitric-oxide synthase (iNOS) using Western blot Analysis. Our data showed that laser light at 632.8 nm suppressed Aβ-induced superoxide production, colocalization between NADPH oxidase gp91phox and p47phox subunits, phosphorylation of cPLA2, and the expressions of IL-1β and iNOS in primary astrocytes. We demonstrated for the first time that 632.8 nm laser was capable of suppressing cellular pathways of oxidative stress and inflammatory responses critical in the pathogenesis in AD. This study should prove to provide the groundwork for further investigations for the potential use of laser therapy as a treatment for AD
Low energy laser light (632.8 nm) suppresses amyloid-β peptide-induced oxidative and inflammatory responses in astrocytes
Oxidative stress and inflammation are important processes in the progression of Alzheimer's disease (AD). Recent studies have implicated the role of amyloid β-peptides (Aβ) in mediating these processes. In astrocytes, oligomeric Aβ induces the assembly of NADPH oxidase complexes resulting in its activation to produce anionic superoxide. Aβ also promotes production of pro-inflammatory factors in astrocytes. Since low energy laser has previously been reported to attenuate oxidative stress and inflammation in biological systems, the objective of this study was to examine whether this type of laser light was able to abrogate the oxidative and inflammatory responses induced by Aβ. Primary rat astrocytes were exposed to Helium-Neon laser (λ=632.8 nm), followed by the treatment with oligomeric Aβ. Primary rat astrocytes were used to measure Aβ-induced production of superoxide anions using fluorescence microscopy of dihydroethidium (DHE), assembly of NADPH oxidase subunits by the colocalization between the cytosolic p47phox subunit and the membrane gp91phox subunit using fluorescent confocal microscopy, phosphorylation of cytosolic phospholipase A2 (cPLA2), and expressions of pro-inflammatory factors including interleukin-1β (IL-1β) and inducible nitric-oxide synthase (iNOS) using Western blot Analysis. Our data showed that laser light at 632.8 nm suppressed Aβ-induced superoxide production, colocalization between NADPH oxidase gp91phox and p47phox subunits, phosphorylation of cPLA2, and the expressions of IL-1β and iNOS in primary astrocytes. We demonstrated for the first time that 632.8 nm laser was capable of suppressing cellular pathways of oxidative stress and inflammatory responses critical in the pathogenesis in AD. This study should prove to provide the groundwork for further investigations for the potential use of laser therapy as a treatment for AD
Fractional quantum Hall effect in the absence of Landau levels
It has been well-known that topological phenomena with fractional
excitations, i.e., the fractional quantum Hall effect (FQHE) \cite{Tsui1982}
will emerge when electrons move in Landau levels. In this letter, we report the
discovery of the FQHE in the absence of Landau levels in an interacting fermion
model. The non-interacting part of our Hamiltonian is the recently proposed
topologically nontrivial flat band model on the checkerboard lattice
\cite{sun}. In the presence of nearest-neighboring repulsion (), we find
that at 1/3 filling, the Fermi-liquid state is unstable towards FQHE. At 1/5
filling, however, a next-nearest-neighboring repulsion is needed for the
occurrence of the 1/5 FQHE when is not too strong. We demonstrate the
characteristic features of these novel states and determine the phase diagram
correspondingly.Comment: 6 pages and 4 figure
Photocurrent measurements of supercollision cooling in graphene
The cooling of hot electrons in graphene is the critical process underlying
the operation of exciting new graphene-based optoelectronic and plasmonic
devices, but the nature of this cooling is controversial. We extract the hot
electron cooling rate near the Fermi level by using graphene as novel
photothermal thermometer that measures the electron temperature () as it
cools dynamically. We find the photocurrent generated from graphene
junctions is well described by the energy dissipation rate , where the heat capacity is and is the
base lattice temperature. These results are in disagreement with predictions of
electron-phonon emission in a disorder-free graphene system, but in excellent
quantitative agreement with recent predictions of a disorder-enhanced
supercollision (SC) cooling mechanism. We find that the SC model provides a
complete and unified picture of energy loss near the Fermi level over the wide
range of electronic (15 to 3000 K) and lattice (10 to 295 K) temperatures
investigated.Comment: 7pages, 5 figure
An Artificial Light Source Influences Mating and Oviposition of Black Soldier Flies, Hermetia illucens
Current methods for mass-rearing black soldier flies, Hermetia illucens (L.) (Diptera: Stratiomyidae), in the laboratory are dependent on sunlight. Quartz-iodine lamps and rare earth lamps were examined as artificial light sources for stimulating H. illucens to mate and lay eggs. Sunlight was used as the control. Adults in the quartz-iodine lamp treatment had a mating rate of 61% of those in the sunlight control. No mating occurred when the rare earth lamp was used as a substitute. Egg hatch for the quartz-iodine lamp and sunlight treatments occurred in approximately 4 days, and the hatch rate was similar between these two treatments. Larval and pupal development under these treatments required approximately 18 and 15 days at 28°° C, respectively. Development of methods for mass rearing of H. illucens using artificial light will enable production of this fly throughout the year without investing in greenhouse space or requiring sunlight
Determinants of postnatal spleen tissue regeneration and organogenesis
Abstract The spleen is an organ that filters the blood and is responsible for generating blood-borne immune responses. It is also an organ with a remarkable capacity to regenerate. Techniques for splenic auto-transplantation have emerged to take advantage of this characteristic and rebuild spleen tissue in individuals undergoing splenectomy. While this procedure has been performed for decades, the underlying mechanisms controlling spleen regeneration have remained elusive. Insights into secondary lymphoid organogenesis and the roles of stromal organiser cells and lymphotoxin signalling in lymph node development have helped reveal similar requirements for spleen regeneration. These factors are now considered in the regulation of embryonic and postnatal spleen formation, and in the establishment of mature white pulp and marginal zone compartments which are essential for spleen-mediated immunity. A greater understanding of the cellular and molecular mechanisms which control spleen development will assist in the design of more precise and efficient tissue grafting methods for spleen regeneration on demand. Regeneration of organs which harbour functional white pulp tissue will also offer novel opportunities for effective immunotherapy against cancer as well as infectious diseases
A study on the application of GOCI to analyzing phytoplankton community distribution in the east sea
This is the final version. Available from The Korean Society of Remote Sensing via the DOI in this record. Phytoplankton controls marine ecosystems in terms of nutrients, photosynthetic rate, carbon cycle, etc. and the degree of its influence on the marine environment depends on their physical size. Many studies have been attempted to identify marine phytoplankton size classes using the remote sensing techniques. One of successful approach was the three-component model which estimates the chlorophyll concentrations of three phytoplankton size classes (micro-phytoplankton; >20 μm, nano-; 2-20 μm and pico-; <2 μm) as a function of total chlorophyll. Here, we examined the applicability of Geostationary Ocean Colour Imager (GOCI) to the mapping of the phytoplankton size class distribution in the East Sea. A fit of the three-component model to a biomarker pigment dataset collected in the study area for some years including a large harmful algal bloom period has been carried out to derive size-fractioned chlorophyll concentration (CHL). The tuned three-component model was applied to the hourly GOCI images to identify the fractions of each phytoplankton size class for the entire CHL. Then, we investigated the distribution of phytoplankton community in terms of the size structure in the East Sea during the harmful Cochlodinium polykrikoides blooms in the summer of 2013.Korea Institute of Ocean Science and TechnologyKorean Ministry of Oceans and Fisheries Researc
Persistent T Cell Repertoire Perturbation and T Cell Activation in HIV After Long Term Treatment
Objective: In people living with HIV (PLHIV), we sought to test the hypothesis that long term anti-retroviral therapy restores the normal T cell repertoire, and investigate the functional relationship of residual repertoire abnormalities to persistent immune system dysregulation. Methods: We conducted a case-control study in PLHIV and HIV-negative volunteers, of circulating T cell receptor repertoires and whole blood transcriptomes by RNA sequencing, complemented by metadata from routinely collected health care records. Results: T cell receptor sequencing revealed persistent abnormalities in the clonal T cell repertoire of PLHIV, characterized by reduced repertoire diversity and oligoclonal T cell expansion correlated with elevated CD8 T cell counts. We found no evidence that these expansions were driven by cytomegalovirus or another common antigen. Increased frequency of long CDR3 sequences and reduced frequency of public sequences among the expanded clones implicated abnormal thymic selection as a contributing factor. These abnormalities in the repertoire correlated with systems level evidence of persistent T cell activation in genome-wide blood transcriptomes. Conclusions: The diversity of T cell receptor repertoires in PLHIV on long term anti-retroviral therapy remains significantly depleted, and skewed by idiosyncratic clones, partly attributable to altered thymic output and associated with T cell mediated chronic immune activation. Further investigation of thymic function and the antigenic drivers of T cell clonal selection in PLHIV are critical to efforts to fully re-establish normal immune function
- …