144 research outputs found

    Perceptual Quality Study on Deep Learning based Image Compression

    Full text link
    Recently deep learning based image compression has made rapid advances with promising results based on objective quality metrics. However, a rigorous subjective quality evaluation on such compression schemes have rarely been reported. This paper aims at perceptual quality studies on learned compression. First, we build a general learned compression approach, and optimize the model. In total six compression algorithms are considered for this study. Then, we perform subjective quality tests in a controlled environment using high-resolution images. Results demonstrate learned compression optimized by MS-SSIM yields competitive results that approach the efficiency of state-of-the-art compression. The results obtained can provide a useful benchmark for future developments in learned image compression.Comment: Accepted as a conference contribution to IEEE International Conference on Image Processing (ICIP) 201

    Streaming-capable High-performance Architecture of Learned Image Compression Codecs

    Full text link
    Learned image compression allows achieving state-of-the-art accuracy and compression ratios, but their relatively slow runtime performance limits their usage. While previous attempts on optimizing learned image codecs focused more on the neural model and entropy coding, we present an alternative method to improving the runtime performance of various learned image compression models. We introduce multi-threaded pipelining and an optimized memory model to enable GPU and CPU workloads asynchronous execution, fully taking advantage of computational resources. Our architecture alone already produces excellent performance without any change to the neural model itself. We also demonstrate that combining our architecture with previous tweaks to the neural models can further improve runtime performance. We show that our implementations excel in throughput and latency compared to the baseline and demonstrate the performance of our implementations by creating a real-time video streaming encoder-decoder sample application, with the encoder running on an embedded device.Comment: Accepted to IEEE ICIP 202

    Learned Image Compression with Mixed Transformer-CNN Architectures

    Full text link
    Learned image compression (LIC) methods have exhibited promising progress and superior rate-distortion performance compared with classical image compression standards. Most existing LIC methods are Convolutional Neural Networks-based (CNN-based) or Transformer-based, which have different advantages. Exploiting both advantages is a point worth exploring, which has two challenges: 1) how to effectively fuse the two methods? 2) how to achieve higher performance with a suitable complexity? In this paper, we propose an efficient parallel Transformer-CNN Mixture (TCM) block with a controllable complexity to incorporate the local modeling ability of CNN and the non-local modeling ability of transformers to improve the overall architecture of image compression models. Besides, inspired by the recent progress of entropy estimation models and attention modules, we propose a channel-wise entropy model with parameter-efficient swin-transformer-based attention (SWAtten) modules by using channel squeezing. Experimental results demonstrate our proposed method achieves state-of-the-art rate-distortion performances on three different resolution datasets (i.e., Kodak, Tecnick, CLIC Professional Validation) compared to existing LIC methods. The code is at https://github.com/jmliu206/LIC_TCM.Comment: Accepted by CVPR2023 (Highlight
    corecore