4,535 research outputs found

    Screening magnetic two-dimensional atomic crystals with nontrivial electronic topology

    Full text link
    To date only a few two-dimensional (2D) magnetic crystals were experimentally confirmed, such as CrI3 and CrGeTe3, all with very low Curie temperatures (TC). High-throughput first-principles screening over a large set of materials yields 89 magnetic monolayers including 56 ferromagnetic (FM) and 33 antiferromagnetic compounds. Among them, 24 FM monolayers are promising candidates possessing TC higher than that of CrI3. High TC monolayers with fascinating electronic phases are identified: (i) quantum anomalous and valley Hall effects coexist in a single material RuCl3 or VCl3, leading to a valley-polarized quantum anomalous Hall state; (ii) TiBr3, Co2NiO6 and V2H3O5 are revealed to be half-metals. More importantly, a new type of fermion dubbed type-II Weyl ring is discovered in ScCl. Our work provides a database of 2D magnetic materials, which could guide experimental realization of high-temperature magnetic monolayers with exotic electronic states for future spintronics and quantum computing applications.Comment: 12 pages, 4 figure

    FLASH: Fast Bayesian Optimization for Data Analytic Pipelines

    Full text link
    Modern data science relies on data analytic pipelines to organize interdependent computational steps. Such analytic pipelines often involve different algorithms across multiple steps, each with its own hyperparameters. To achieve the best performance, it is often critical to select optimal algorithms and to set appropriate hyperparameters, which requires large computational efforts. Bayesian optimization provides a principled way for searching optimal hyperparameters for a single algorithm. However, many challenges remain in solving pipeline optimization problems with high-dimensional and highly conditional search space. In this work, we propose Fast LineAr SearcH (FLASH), an efficient method for tuning analytic pipelines. FLASH is a two-layer Bayesian optimization framework, which firstly uses a parametric model to select promising algorithms, then computes a nonparametric model to fine-tune hyperparameters of the promising algorithms. FLASH also includes an effective caching algorithm which can further accelerate the search process. Extensive experiments on a number of benchmark datasets have demonstrated that FLASH significantly outperforms previous state-of-the-art methods in both search speed and accuracy. Using 50% of the time budget, FLASH achieves up to 20% improvement on test error rate compared to the baselines. FLASH also yields state-of-the-art performance on a real-world application for healthcare predictive modeling.Comment: 21 pages, KDD 201

    Enhancing the geometric quantum discord in the Heisenberg {\it XX} chain by Dzyaloshinsky-Moriya interaction

    Full text link
    We studied the trance distance, the Hellinger distance, and the Bures distance geometric quantum discords (GQDs) for a two-spin Heisenberg {\it XX} chain with the Dzyaloshinsky-Moriya (DM) interaction and the external magnetic fields. We found that considerable enhancement of the GQDs can be achieved by introducing the DM interaction, and their maxima were obtained in the limiting case D→∞D\rightarrow \infty. The external magnetic fields and the increase of the temperature can also enhance the GQDs to some extent for certain special cases.Comment: 6 pages, 4 figure

    Hierarchical Neural Network Architecture In Keyword Spotting

    Full text link
    Keyword Spotting (KWS) provides the start signal of ASR problem, and thus it is essential to ensure a high recall rate. However, its real-time property requires low computation complexity. This contradiction inspires people to find a suitable model which is small enough to perform well in multi environments. To deal with this contradiction, we implement the Hierarchical Neural Network(HNN), which is proved to be effective in many speech recognition problems. HNN outperforms traditional DNN and CNN even though its model size and computation complexity are slightly less. Also, its simple topology structure makes easy to deploy on any device.Comment: To be submitted in part to IEEE ICASSP 201

    Learning to Write Stylized Chinese Characters by Reading a Handful of Examples

    Full text link
    Automatically writing stylized Chinese characters is an attractive yet challenging task due to its wide applicabilities. In this paper, we propose a novel framework named Style-Aware Variational Auto-Encoder (SA-VAE) to flexibly generate Chinese characters. Specifically, we propose to capture the different characteristics of a Chinese character by disentangling the latent features into content-related and style-related components. Considering of the complex shapes and structures, we incorporate the structure information as prior knowledge into our framework to guide the generation. Our framework shows a powerful one-shot/low-shot generalization ability by inferring the style component given a character with unseen style. To the best of our knowledge, this is the first attempt to learn to write new-style Chinese characters by observing only one or a few examples. Extensive experiments demonstrate its effectiveness in generating different stylized Chinese characters by fusing the feature vectors corresponding to different contents and styles, which is of significant importance in real-world applications.Comment: Accepted by IJCAI 201

    Graph Regularized Low Rank Representation for Aerosol Optical Depth Retrieval

    Full text link
    In this paper, we propose a novel data-driven regression model for aerosol optical depth (AOD) retrieval. First, we adopt a low rank representation (LRR) model to learn a powerful representation of the spectral response. Then, graph regularization is incorporated into the LRR model to capture the local structure information and the nonlinear property of the remote-sensing data. Since it is easy to acquire the rich satellite-retrieval results, we use them as a baseline to construct the graph. Finally, the learned feature representation is feeded into support vector machine (SVM) to retrieve AOD. Experiments are conducted on two widely used data sets acquired by different sensors, and the experimental results show that the proposed method can achieve superior performance compared to the physical models and other state-of-the-art empirical models.Comment: 16 pages, 6 figure

    Multipath IP Routing on End Devices: Motivation, Design, and Performance

    Full text link
    Most end devices are now equipped with multiple network interfaces. Applications can exploit all available interfaces and benefit from multipath transmission. Recently Multipath TCP (MPTCP) was proposed to implement multipath transmission at the transport layer and has attracted lots of attention from academia and industry. However, MPTCP only supports TCP-based applications and its multipath routing flexibility is limited. In this paper, we investigate the possibility of orchestrating multipath transmission from the network layer of end devices, and develop a Multipath IP (MPIP) design consisting of signaling, session and path management, multipath routing, and NAT traversal. We implement MPIP in Linux and Android kernels. Through controlled lab experiments and Internet experiments, we demonstrate that MPIP can effectively achieve multipath gains at the network layer. It not only supports the legacy TCP and UDP protocols, but also works seamlessly with MPTCP. By facilitating user-defined customized routing, MPIP can route traffic from competing applications in a coordinated fashion to maximize the aggregate user Quality-of-Experience.Comment: 12 pages, 9 figure

    Temperature effect on the coupling between coherent longitudinal phonons and plasmons in n- and p-type GaAs

    Full text link
    The coupling between longitudinal optical (LO) phonons and plasmons plays a fundamental role in determining the performance of doped semiconductor devices. In this work, we report a comparative investigation into the dependence of the coupling on temperature and doping in n- and p-type GaAs by using ultrafast optical phonon spectroscopy. A suppression of coherent oscillations has been observed in p-type GaAs at lower temperature, strikingly different from n-type GaAs and other materials in which coherent oscillations are strongly enhanced by cooling. We attribute this unexpected observation to a cooling-induced elongation of the depth of the depletion layer which effectively increases the screening time of surface field due to a slow diffusion of photoexcited carriers in p-type GaAs. Such an increase breaks the requirement for the generation of coherent LO phonons and, in turn, LO phonon-plasmon coupled modes because of their delayed formation in time.Comment: 18 pages, 4 figure

    Pixel-Adaptive Convolutional Neural Networks

    Full text link
    Convolutions are the fundamental building block of CNNs. The fact that their weights are spatially shared is one of the main reasons for their widespread use, but it also is a major limitation, as it makes convolutions content agnostic. We propose a pixel-adaptive convolution (PAC) operation, a simple yet effective modification of standard convolutions, in which the filter weights are multiplied with a spatially-varying kernel that depends on learnable, local pixel features. PAC is a generalization of several popular filtering techniques and thus can be used for a wide range of use cases. Specifically, we demonstrate state-of-the-art performance when PAC is used for deep joint image upsampling. PAC also offers an effective alternative to fully-connected CRF (Full-CRF), called PAC-CRF, which performs competitively, while being considerably faster. In addition, we also demonstrate that PAC can be used as a drop-in replacement for convolution layers in pre-trained networks, resulting in consistent performance improvements.Comment: CVPR 2019. Video introduction: https://youtu.be/gsQZbHuR64

    Out-of-time-order correlators and quantum phase transitions in the Rabi and Dicke model

    Full text link
    The out-of-time-order correlators (OTOCs) is used to study the quantum phase transitions (QPTs) between the normal phase and the superradiant phase in the Rabi and few-body Dicke models with large frequency ratio of theatomic level splitting to the single-mode electromagnetic radiation field frequency. The focus is on the OTOC thermally averaged with infinite temperature, which is an experimentally feasible quantity. It is shown that thecritical points can be identified by long-time averaging of the OTOC via observing its local minimum behavior. More importantly, the scaling laws of the OTOC for QPTs are revealed by studying the experimentally accessible conditions with finite frequency ratio and finite number of atoms in the studied models. The critical exponents extracted from the scaling laws of OTOC indicate that the QPTs in the Rabi and Dicke models belong to the same universality class.Comment: 9 pages, 10 figures, v3: published version added; v2: supplemental material added, more results adde
    • …
    corecore