39 research outputs found

    Dissecting the genetic architecture of coronary artery disease by genome engineering

    Get PDF
    One of the greatest challenges facing biomedical research since the sequencing of the human genome has been to understand the role of genetic variation in human disease. Many genetic variants have been associated with common diseases. However, determining the functional consequences of these variants has been hard. Several variants are often inherited together in tightly linked blocks, making it difficult to determine the causative variant. People have millions of other genetic differences, making it difficult to correlate cellular phenotypes with a particular variant. Different gene sets are expressed in different cells, but it is difficult to extract disease-relevant cells from large numbers of patients. We describe a method with the potential to revolutionize the functional analysis of genetic variation, using custom nucleases to genetically modify individual variants in induced pluripotent stem cells. This process would provide unprecedented analytical power, present the first general method to determine if a variant is causative, and analyze function disease-relevant cell types. We will focus on variants at the 9p21 region of the genome that have been associated with coronary artery disease (CAD). The methods should provide a new way to unlock the wealth of data from genome-wide association studies, and to probe the genetic architecture of common diseases. We will describe our improved methods for inexpensive and rapid construction of highly active zinc finger and TALE nucleases to examine the functional role of polymorphisms at the 9p21 CAD risk locus

    Investigation of Humidity and Temperature Response of a Silica Gel Coated Microfiber Coupler

    Get PDF
    The humidity and temperature responses of a microfiber coupler (MFC) coated with silica gel are investigated. Two MFC structures with different waist diameters of 2.5 and 3.5 μm were fabricated by fusing and tapering two single-mode fibers using a microheater brushing technique. The influences of the coating thickness and tapered waist diameter on the sensing performance are analyzed. For the proposed sensor with a waist diameter of 2.5 μm and 8-layers thick coating, the change in the relative humidity (RH) results in an exponential blueshift with a maximum sensitivity of 1.6 nm/% RH in the range from 70 to 86% RH. In response to the temperature change, the sensor's transmission spectrum redshifts in a linear fashion with an average sensitivity of 0.55 nm/°C in the range from 20 to 40 °C. The study is important for the development of the proposed fiber structure as a humidity or temperature sensor

    High sensitivity ammonia gas sensor based on a silica gel coated microfiber coupler

    Get PDF
    In this paper, a high sensitivity ammonia gas sensor is proposed based on a silica gel coated microfiber coupler (MFC). The MFC structure is formed by the two tapered fibers with 3 μm waist diameter each, which were fabricated by using a customized microheater brushing technique. Silica gel coating was prepared by a sol-gel technique and applied on the surface of the MFC as a thin layer. The spectral characteristics of the proposed sensor were studied under various ammonia gas concentrations. The experimental results show that the coating thickness strongly affected the sensitivity of the MFC-based sensor to ammonia gas concentration. For the sensor with a 90 nm silica gel coating thickness, the highest measurement sensitivity is 2.23 nm/ppm for ammonia gas concentration, and the resolution is as good as 5 ppb, while the measured response and recovery times are ~ 50 and 35 seconds, respectively. Finally, it is demonstrated that the proposed sensor offers good repeatability and selectivity to ammonia gas

    Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability

    Get PDF
    In this paper, we propose a microdisk resonator with negative thermal optical coefficient (TOC) polymer for refractive index (RI) sensing with thermal stability. The transmission characteristics and sensing performances by using quasi-TE01 and quasi-TM01 modes are simulated by a three-dimensional finite element method. The influences of the TOC, RI, and thickness of the polymer on the sensing performances are also investigated. The simulation results show that the RI sensitivity Sn and temperature sensitivity ST with different polymers are in the ranges of 25.1-26 nm/RIU and 67.3-75.2 pm/K for the quasi-TE01 mode, and 94.5-110.6 nm/RIU and 1.2-51.3 pm/K for the quasi-TM01 mode, respectively. Moreover, figure-of-merit of the temperature sensing for the quasi-TM01 mode is in the range of 2 × 10-4-8 × 10-3, which can find important application in the implementation of the adiabatic devices

    Microdisk Resonator With Negative Thermal Optical Coefficient Polymer for Refractive Index Sensing With Thermal Stability

    Get PDF
    In this paper, we propose a microdisk resonator with negative thermal optical coefficient (TOC) polymer for refractive index (RI) sensing with thermal stability. The transmission characteristics and sensing performances by using quasi-TE01 and quasi-TM01 modes are simulated by a three-dimensional finite element method. The influences of the TOC, RI, and thickness of the polymer on the sensing performances are also investigated. The simulation results show that the RI sensitivity Sn and temperature sensitivity ST with different polymers are in the ranges of 25.1-26 nm/RIU and 67.3-75.2 pm/K for the quasi-TE01 mode, and 94.5-110.6 nm/RIU and 1.2-51.3 pm/K for the quasi-TM01 mode, respectively. Moreover, figure-of-merit of the temperature sensing for the quasi-TM01 mode is in the range of 2 × 10 -4 -8 × 10 -3 , which can find important application in the implementation of the adiabatic devices

    Simultaneous Measurement of the Refractive Index and Temperature Based on Microdisk Resonator With Two Whispering-Gallery Modes

    Get PDF
    In this paper, a microdisk resonator with two whispering-gallery modes (WGMs) is proposed for label-free biochemical sensing. According to the transmission responses of the two WGMs with different coupling gaps, there is the critical coupling status for the WGM (0, 36) while there is no critical coupling status for the WGM (1, 28). For the WGMs (0, 36) and (1, 28), the refractive index (RI) sensitivities of 45.8821 and 72.9402 nm/RIU are obtained, and the corresponding RI detection limits (DLs) of 8.5902 × 10-4 and 1.9228 × 10-3 RIU are achieved, respectively. Moreover, the proposed sensor also has the temperature sensitivities of 0.0730 and 0.0703 nm/K, which correspond to the temperature DLs of 0.1631 and 0.6263 K, respectively. By constructing a characteristic matrix, it is demonstrated that simultaneous measurement of the RI and temperature can be achieved
    corecore