2 research outputs found

    Mitochondrial COI sequences revealed shallow but significant divergences among Amphioctopus aegina (Octopoda, Octopodidae) populations in coastal waters of China

    Get PDF
    Amphioctopus aegina is an important fishery resource in the coastal waters of China. In the present study, the genetic diversity and population genetic structure among four populations of A. aegina throughout its distributional range in China were assessed using the mitochondrial cytochrome oxidase 1 (COI) sequences. The results revealed a generally low genetic diversity (Hd: 0.2842–0.6670; Pi: 0.0007–0.0015) in A. aegina populations. The neighbor-joining (NJ) phylogenetic tree and the haplotype networks, as well as the results of the molecular variance (AMOVA) analyses, indicated a shallow phylogeographic structure among the four populations. However, pairwise ΦST statistics and genetic distance analyses revealed significant (p<0.01) genetic differentiation among Qinzhou and the rest three populations of Zhanjiang, Huizhou, and Dongshan. The demographic history analyses indicated a population expansion in A. aegina, and the role of Leizhou peninsula isolation in shaping the population differentiation. These results would largely enhance our understanding of the genetic structure and hence promote the scientific management of A. aegina fishery resources in coastal waters of China

    Population structure of Taenioides sp. (Gobiiformes, Gobiidae) reveals their invasion history to inland waters of China based on mitochondrial DNA control region

    No full text
    Taenioides sp. is a small temperate fish originally known to inhabit muddy bottoms of brackish waters in coastal areas of China. However, it began to invade multiple inland freshwaters and caused severe damage to Chinese aquatic ecosystems in recent years. To investigate the sources and invasive history of this species, we examined the population structure of 141 individuals collected from seven locations based on partial mitochondrial D-loop regions. The results revealed that the genetic diversity gradually decreased from south to north, with the Yangtze River Estuary and Taihu Lake populations possessing the highest haplotype diversity (Hd), average number of differences (k), and nucleotide diversity (π) values, suggesting that they may be the sources of Taenioides sp. invasions. Isolation-by-distance analysis revealed a non-significant correlation (p = 0.166) between genetic and geographic distances among seven populations, indicating that dispersal mediated through the regional hydraulic projects may have played an essential role in Taenioides sp. invasions. The population genetic structure analysis revealed two diverged clades among seven populations, with clade 2 only detected in source populations, suggesting a possible difference in the invasion ability of the two clades. Our results provide insights into how native estuary fish become invasive through hydraulic projects and may provide critical information for the future control of this invasive species
    corecore