1,386 research outputs found
High order quantum decoherence via multi-particle amplitude for boson system
In this paper we depict the high order quantum coherence of a boson system by
using the multi-particle wave amplitude, whose norm square is just the high
order correlation function. This multi-time amplitude can be shown to be a
superposition of several "multi-particle paths". When the environment or a
apparatus entangles with them to form a generalized "which-way" measurement for
many particle system, the quantum decoherence happens in the high order case
dynamically. An explicit illustration is also given with an intracavity system
of two modes interacting with a moving mirror.Comment: 7 pages, revtex, 4 eps figure
An quantum approach of measurement based on the Zurek's triple model
In a close form without referring the time-dependent Hamiltonian to the total
system, a consistent approach for quantum measurement is proposed based on
Zurek's triple model of quantum decoherence [W.Zurek, Phys. Rev. D 24, 1516
(1981)]. An exactly-solvable model based on the intracavity system is dealt
with in details to demonstrate the central idea in our approach: by peeling off
one collective variable of the measuring apparatus from its many degrees of
freedom, as the pointer of the apparatus, the collective variable de-couples
with the internal environment formed by the effective internal variables, but
still interacts with the measured system to form a triple entanglement among
the measured system, the pointer and the internal environment. As another
mechanism to cause decoherence, the uncertainty of relative phase and its
many-particle amplification can be summed up to an ideal entanglement or an
Shmidt decomposition with respect to the preferred basis.Comment: 22pages,3figure
Factoring the unitary evolution operator and quantifying entanglement
The unitary evolution can be represented by a finite product of exponential
operators. It leads to a perturbative expression of the density operator of a
close system. Based on the perturbative expression scheme, we present a
entanglement measure, this measure has the advantage that it is easy to compute
for a general dynamical process.Comment: 11 pages, LATEX, no figure
Effective scraping in a scraped surface heat exchanger: some fluid flow analysis
An outline of mathematical models that have been used to understand the behaviour of scraped surface heat exchangers is presented. In particular the problem of the wear of the blades is considered. A simple model, exploiting known behaviour of viscous flow in corners and in wedges, and accounting for the forces on the blade is derived and solutions generated. The results shows initial rapid wear but that the wear rate goes to zero
Quantum information storage and state transfer based on spin systems
The idea of quantum state storage is generalized to describe the coherent transfer of quantum
information through a coherent data bus. In this universal framework, we comprehensively review
our recent systematical investigations to explore the possibility of implementing the physical processes
of quantum information storage and state transfer by using quantum spin systems, which
may be an isotropic antiferromagnetic spin ladder system or a ferromagnetic Heisenberg spin
chain. Our studies emphasize the physical mechanisms and the fundamental problems behind the
various protocols for the storage and transfer of quantum information in solid state systems
Quantum anti-Zeno effect in artificial quantum systems
In this paper, we study a quantum anti-Zeno effect (QAZE) purely induced by
repetitive measurements for an artificial atom interacting with a structured
bath. This bath can be artificially realized with coupled resonators in one
dimension and possesses photonic band structure like Bloch electron in a
periodic potential. In the presence of repetitive measurements, the pure QAZE
is discovered as the observable decay is not negligible even for the atomic
energy level spacing outside of the energy band of the artificial bath. If
there were no measurements, the decay would not happen outside of the band. In
this sense, the enhanced decay is completely induced by measurements through
the relaxation channels provided by the bath. Besides, we also discuss the
controversial golden rule decay rates originated from the van Hove's
singularities and the effects of the counter-rotating terms.Comment: 12 pages, 8 figure
Superradiance of low density Frenkel excitons in a crystal slab of three-level atoms: Quantum interference effect
We systematically study the fluorescence of low density Frenkel excitons in a
crystal slab containing V-type three-level atoms. Based on symmetric
quasi-spin realization of SU(3) in large limit, the two-mode exciton
operators are invoked to depict various collective excitations of the
collection of these V-type atoms starting from their ground state. By making
use of the rotating wave approximation, the light intensity of radiation for
the single lattice layer is investigated in detail. As a quantum coherence
effect, the quantum beat phenomenon is discussed in detail for different
initial excitonic states. We also test the above results analytically without
the consideration of the rotating wave approximation and the self-interaction
of radiance field is also included.Comment: 18pages, 17 figures. Resubmit to Phys. Rev.
BES3 time of flight monitoring system
A Time of Flight monitoring system has been developed for BES3.
The light source is a 442-443 nm laser diode, which is stable and provides a
pulse width as narrow as 50 ps and a peak power as large as 2.6 W. Two
optical-fiber bundles with a total of 512 optical fibers, including spares, are
used to distribute the light pulses to the Time of Flight counters. The design,
operation, and performance of the system are described.Comment: 8 pages 16 figures, submitted to NI
Thermal properties of coal during low temperature oxidation using a grey correlation method
The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The low temperature oxidation of coal is a contradictory and unified dynamic process of coexisting mass and heat transfer. The thermophysical properties are crucial during coal spontaneous combustion. In the current paper, the variations of moisture, ash, volatiles, fixed carbon and thermophysical properties (thermal diffusivity, specific heat and thermal conductivity) of three coal samples from 30 °C to 300 °C were studied, and their grey correlation was analyzed. The results indicated that with the increase of temperature, the free moisture of Coals A and B decreased first but then increased, while the free moisture of Coal C kept decreasing without a later increase. The variation of surface moisture was consistent with that of free moisture. The trend of volatiles and fixed carbon was completely the opposite, showing a significant negative correlation. Ash was less affected by temperature. Along with the rise of temperature, the thermal diffusivity of three coal samples decreased first but later increased, and the specific heat was always in a state of increasing. The change in thermal conductivity was mainly affected by specific heat. By calculating the gray correlation degree, the major factors affecting the thermophysical properties were obtained
Inflating in a Better Racetrack
We present a new version of our racetrack inflation scenario which, unlike
our original proposal, is based on an explicit compactification of type IIB
string theory: the Calabi-Yau manifold P^4_[1,1,1,6,9]. The axion-dilaton and
all complex structure moduli are stabilized by fluxes. The remaining 2 Kahler
moduli are stabilized by a nonperturbative superpotential, which has been
explicitly computed. For this model we identify situations for which a linear
combination of the axionic parts of the two Kahler moduli acts as an inflaton.
As in our previous scenario, inflation begins at a saddle point of the scalar
potential and proceeds as an eternal topological inflation. For a certain range
of inflationary parameters, we obtain the COBE-normalized spectrum of metric
perturbations and an inflationary scale of M = 3 x 10^{14} GeV. We discuss
possible changes of parameters of our model and argue that anthropic
considerations favor those parameters that lead to a nearly flat spectrum of
inflationary perturbations, which in our case is characterized by the spectral
index n_s = 0.95.Comment: 20 pages, 7 figures. Brief discussion on the non-gaussianity of this
model, one more figure of the field trajectories added as well as other minor
changes to the tex
- …