10 research outputs found
Recommended from our members
Chromosome breakpoint distribution of damage induced in peripheral blood lymphocytes by densely ionising radiation
Purpose: To assess the chromosomal breakpoint distribution in human peripheral blood lymphocytes (PBL) after exposure to a low dose of high linear energy transfer (LET) α-particles using the technique of multiplex fluorescence in situ hybridisation (m-FISH).
Materials and methods: Separated PBL were exposed in G0 to 0.5 Gy 238 Pu α-particles, stimulated to divide and harvested ~48-50 hours after exposure. Metaphase cells were assayed by m-FISH and chromosome breaks identified. The observed distribution of breaks were then compared with expected distributions of breaks, calculated on the assumption that the distribution of breaks is random with regard to either chromosome volume or chromosome surface area.
Results: More breaks than expected were observed on chromosomes 2 and 11, however no particular region of either chromosome was identified as significantly contributing to this over-representation. The identification of hot or cold chromosome regions (pter,p,cen,q,qter) varied depending on whether the data were compared according to chromosome volume or surface area.
Conclusions: A deviation from randomness in chromosome breakpoint distribution was observed, and this was greatest when data were compared according to the relative surface area of each individual chromosome (or region). The identification of breaks by m-FISH (i.e. more efficient observation of interchanges than intrachanges) and importance of territorial boundaries on interchange formation are thought to contribute to these differences. The significance of the observed non-random distribution of breaks on chromosomes 2 and 11 in relation to chromatin organisation is unclear
Recommended from our members
Effect of linear energy transfer (LET) on complexity of alpha-particle-induced chromosome aberrations in human CD34+ cells.
The aim of this study was to assess the relative influence of linear energy transfer (LET) of α-particles on chromosome aberration complexity in the absence of significant other track structure differences. To do this we irradiated human haemopoietic stem cells (CD34+) with The aim of this study was to assess the relative influence of linear energy transfer (LET) of α-particles of various incident LET values (110 - 152 keV/µm, with mean LETs through the cell of 119 – 182 keV/µm) at an equi-fluence of approximately 1 α-particle/cell and assayed for chromosome aberrations by m-FISH. Based on a single harvest time to collect early division mitosis , complex aberrations were observed at comparable frequencies irrespective of incident LET, however when expressed as a proportion of the total exchanges detected, their occurrence was seen to increase with increasing LET. Cycle analysis to predict theoretical DNA double strand break rejoining cycles was also carried out on all complex chromosome aberrations detected. By doing this we found that the majority of complex aberrations are formed in single non-reducible cycles that involve just 2 or 3 different chromosomes and 3 or 4 different breaks. Each non-reducible cycle is suggested to represent ‘an area’ of finite size within the nucleus where double strand break repair occurs. We suggest that local density of damage induced and proximity of independent repair areas within the interphase nucleus determine the complexity of aberration resolved in metaphase. Overall, the most likely outcome of a single nuclear traversal of a single α-particle in CD34+ cells is a single chromosome aberration per damaged cell. As the incident LET of the α-particle increases, the likelihood of this aberration being classed as complex is greater
Recommended from our members
Increased complexity of radiation-induced chromosome aberrations consistent with a mechanism of sequential formation
Complex chromosome aberrations (any exchange involving 3 or more breaks in 2 or more chromosomes) are effectively induced in peripheral blood lymphocytes (PBL) after exposure to low doses (mostly single particles) of densely ionising high-linear energy transfer (LET) α-particle radiation. The complexity, when observed by multiplex fluorescence in situ hybridisation (m-FISH), shows that commonly 4 but up to 8 different chromosomes can be involved in each rearrangement. Given the territorial organisation of chromosomes in interphase and that only a very small fraction of the nucleus is irradiated by each α-particle traversal, the aim of this study is to address how aberrations of such complexity can be formed. To do this, we applied theoretical ‘cycle’ analyses using m-FISH paint detail of PBL in their 1st cell division after exposure to high-LETα-particles. In brief, ‘cycle’ analysis deconstructs the aberration ‘observed’ by m-FISH to make predictions as to how it could have been formed in interphase. We propose from this that individual high-LET α-particle-induced complex aberrations may be formed by the misrepair of damaged chromatin in single physical ‘sites’ within the nucleus, where each ‘site’ is consistent with an ‘area’ corresponding to the interface of 2-3 different chromosome territories. Limited migration of damaged chromatin is ‘allowed’ within this ‘area’. Complex aberrations of increased size, reflecting the path of α-particle nuclear intersection, are formed through the sequential linking of these individual sites by the involvement of common chromosomes
Deletions of 2q14 that include the homeobox engrailed 1 (EN1) transcription factor are compatible with a normal phenotype
A novel transmitted 2-3 Mb deletion of 2q14.1-q14.2 was found in an affected boy from a consanguineous family with a possible diagnosis of PEHO syndrome (OMIM 260565). BAC FISH showed that the deletion included a minimum of 20 genes including the homeobox engrailed 1 gene (EN1). However, the same deletion was also found in his phenotypically normal father and brother (family 1). The phenotype of the proband may, therefore, have been coincidental to the deletion, a result of a recessive condition within or outside the deleted segment or possibly due to variable dosage compensation of EN1 by the paralogous EN2 gene at 7q36. BAC FISH also showed that this deletion overlapped with a previously reported transmitted deletion of 2q13-q14.1 that had no phenotypic consequences (family 2). The deleted regions contained a total of 32 genes and comprise the final 5.25 Mb of the ancestral chromosome 2B from which chromosome 2 was formed in man. These families provide further evidence that heterozygous deletions of regions of low gene density are compatible with a normal phenotype
Recurrent copy number changes in mentally retarded children harbour genes involved in cellular localization and the glutamate receptor complex
To determine the phenotypic significance of copy number changes (CNCs) in the human genome, we performed genome-wide segmental aneuploidy profiling by BAC-based array-CGH of 278 unrelated patients with multiple congenital abnormalities and mental retardation (MCAMR) and in 48 unaffected family members. In 20 patients, we found de novo CNCs composed of multiple consecutive probes. Of the 125 probes making up these probably pathogenic CNCs, 14 were also found as single CNCs in other patients and 5 in healthy individuals. Thus, these CNCs are not by themselves pathogenic. Almost one out of five patients and almost one out of six healthy individuals in our study cohort carried a gain or a loss for any one of the recently discovered microdeletion/microduplication loci, whereas seven patients and one healthy individual showed losses or gains for at least two different loci. The pathogenic burden resulting from these CNCs may be limited as they were found with similar frequencies among patients and healthy individuals (P=0.165; Fischer's exact test), and several individuals showed CNCs at multiple loci. CNCs occurring specifically in our study cohort were enriched for components of the glutamate receptor family (GRIA2, GRIA4, GRIK2 and GRIK4) and genes encoding proteins involved in guiding cell localization during development (ATP1A2, GIRK3, GRIA2, KCNJ3, KCNJ10, KCNK17 and KCNK5). This indicates that disease cohort-specific compilations of CNCs may aid in identifying loci, genes and biological processes that contribute to the phenotype of patients