86 research outputs found

    1.38 W tunable high-power narrow-linewidth external-cavity tapered amplifier at 670 nm

    Get PDF

    Исследование влияния температуры на процесс восстановления ацетилдифенила изопропилатом алюминия

    Get PDF
    We present a compact module, emitting nearly diffraction limited green laser light at 531 nm at an average output power of more than 500 mW. As pump source for the second harmonic generation a DBR tapered laser with a total length of 6 mm was used. The RW section had a length of 2 mm including a 1 mm long passive DBR section. The devices were mounted p-side up on a copper block. For this mounting scheme, the device reaches up to 7 W maximal output power. At the power level of about 3.8 W used in the presented experiment, a wavelength of 1062.6 nm with a line-width below 0.02 nm (FWHM) was determined. More than 80% of the emitted power is originated within the central lobe of the beam waist profile illustrating the nearly diffraction limited beam quality. Using a 30mm long MgO-doped periodically poled LiNbO3 bulk crystal, the second harmonic wave is generated in a single-pass setup. Due to precise alignment and beam shaping based on the results of numerical simulations and a properly temperature control of the PPLN crystal, a maximum optical conversion efficiency of more than 14% (3.7%/W) was achieved. The fluctuation of the output power is far below 1%

    Diode laser based light sources for biomedical applications

    Get PDF
    Diode lasers are by far the most efficient lasers currently available. With the ever-continuing improvement in diode laser technology, this type of laser has become increasingly attractive for a wide range of biomedical applications. Compared to the characteristics of competing laser systems, diode lasers simultaneously offer tunability, high-power emission and compact size at fairly low cost. Therefore, diode lasers are increasingly preferred in important applications, such as photocoagulation, optical coherence tomography, diffuse optical imaging, fluorescence lifetime imaging, and terahertz imaging. This review provides an overview of the latest development of diode laser technology and systems and their use within selected biomedical applications

    Near Infrared Diode Laser THz Systems

    Get PDF
    The generation and detection of radiation in the THz frequency range can be achieved with many different electronic and photonic concepts. Among the many different photonic THz systems the most versatile are based on diode lasers. In this paper we describe and review the different concepts and optimization ideas for diode laser based THz systems in order to achieve the best performance for different types of THz setups.</p

    Novel low-loss 3-element ring resonator for second-harmonic generation of 808nm into 404nm using periodically poled KTP

    Get PDF
    We present a novel ring resonator for second harmonic generation consisting of only two spherical mirrors and a refractive element. In our work we use periodically poled KTP as a nonlinear material for generating the second harmonic using an 808nm tapered grating stabilized external cavity laser as pump source. With 286mW of fundamental 808nm radiation coupled into the resonator, we generate 130mW blue light at 404nm, resulting in a power conversion efficiency of 45\%

    Factors influencing brightness and beam quality of conventional and distributed Bragg reflector tapered laser diodes in absence of self-heating

    Get PDF
    In this study, the authors examine some of the factors affecting the brightness and the beam quality of high-power tapered lasers. The large volume resonators required to achieve a high-power, high-brightness operation make the beam quality sensitive to carrier lensing and a multimode operation. These cause bleaching of the regions outside the ridge waveguide. The beam quality in the conventional and the distributed Bragg reflector tapered lasers is examined in the absence of the self-heating effects to investigate the effect of the carrier lensing effects. The influence of the front facet reflectivity and the taper angle on the beam quality is investigated. The beam quality was found to degrade with an increase in the front facet reflectivity and for the larger taper angles in the conventional tapered lasers, especially at low ridge waveguide currents. Finally, the performance of the conventional tapered lasers employing a beamspoiler was assessed. The beam quality was found to be comparable with that achieved in the DBR tapered lasers

    High power 404 nm source based on second harmonic generation in PPKTP of a tapered external feedback diode laser

    Get PDF
    We present results on a 404 nm laser system based on second harmonic generation in a new compact external cavity configuration. We obtain a stable 318 mW cw diffraction limited output from the system with a mode-matched pump power of 630 mW. We observe up to 620 mW SHG, when the cavity is operating in scanning mode. The pump source is an external cavity grating feedback tapered diode laser operating at 808 nm. We find that thermal effects in the nonlinear crystal severely limit the efficiency of the setup with high input powers
    corecore