215 research outputs found
An Eight-year Study of the Influence of IT Career Camps on Altering Perceptions of IT Majors and Careers
The number of IT professionals in the workplace depends in large part on the number of new university technology graduates, especially in computer science and MIS. Since 2000, this number has declined precipitously, and, despite the modest upswing since 2010-2011, organizations and universities still struggle with numbers. This study examines a partnership between one university and a global IT firm to help increase IT majors through an annual high school IT camp focused on invigorating interest in technology careers. These (hopefully) fun, four-day, in-residence camps, held annually since 2007, feature technology training, appropriate tours, engagement with technology professionals, and education on the nature of IT work and job prospects. Based on extensive data collection from five camps (2010-2014), participants (particularly males) significantly increased their career awareness and positive attitudes toward an IT career and were more determined to choose IT as a major and career. While we did not meet all objectives, the IT camps played a crucial role in boosting interest in IT as a career and enhancing perceptions and beliefs of IT
Bacteriophages of wastewater foaming-associated filamentous Gordonia reduce host levels in raw activated sludge
Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment
Bacteriophage application restores ethanol fermentation characteristics disrupted by Lactobacillusfermentum
BACKGROUND: Contamination of corn mash by lactic acid bacteria (LAB) reduces the efficiency of the ethanol fermentation process. The industry relies heavily on antibiotics for contamination control and there is a need to develop alternative methods. The goals of this study were to determine the diversity and abundance of bacteria contaminating commercial ethanol fermentations, and to evaluate the potential of anti-LAB bacteriophages in controlling production losses. RESULTS: Bacterial populations in 27 corn mash samples collected from nine different commercial plants were determined by pyrosequencing of 16S rRNA amplicons. The results showed that the most abundant bacteria (>50 % of total population) in 24 of the 27 samples included LAB genera such as Lactobacillus, Streptococcus, Lactococcus, Weissella, Enterococcus, and Pediococcus. Lactobacillus was identified as the most prevalent genus at all fermentation stages in all plants, accounting for between 2.3 and 93.7 % of each population and constituting the major genus (>50 %) in nine samples from five plants and the most abundant genus in five other samples. Lactobacillus species, including L. delbrueckii, L. fermentum, L. mucosae, and L. reuteri were the most well-represented species. Two bacteriophages that target L. fermentum strains from ethanol plants, vB_LfeS_EcoSau and vB_LfeM_EcoInf (EcoSau and EcoInf), were isolated and characterized as a siphophage and a myophage, respectively. Analysis of the 31,703 bp genome of EcoSau revealed its similarity to the P335-like phage group, and the 106,701 bp genome of phage EcoInf was determined to be a novel phage type despite its distant relationship to the SPO1-like phages. Addition of phages EcoSau and EcoInf to L. fermentum-contaminated corn mash fermentation models restored the yields of ethanol and reduced levels of residual glucose, lactic acid, and acetic acid to that comparable to the infection-free control. CONCLUSIONS: This study provides detailed insight into the microbiota contaminating commercial ethanol fermentations, and highlights the abundance of LAB, especially L. delbrueckii, L. fermentum, L. mucosae, and L. reuteri, in the process. This study suggests that phages with broad coverage of major LAB species can be applied directly to corn mash for antibiotic-free control of contamination in the ethanol fermentation industry. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13068-015-0325-9) contains supplementary material, which is available to authorized users
How explicable are differences between reviews that appear to address a similar research question? A review of reviews of physical activity interventions
Background Systematic reviews are promoted as being important to inform decision-making. However, when presented with a set of reviews in a complex area, how easy is it to understand how and why they may differ from one another? Methods An analysis of eight reviews reporting evidence on effectiveness of community interventions to promote physical activity. We assessed review quality and investigated overlap of included studies, citation of relevant reviews, consistency in reporting, and reasons why specific studies may be excluded. Results There were 28 included studies. The majority (n = 22; 79%) were included only in one review. There was little cross-citation between reviews (n = 4/28 possible citations; 14%). Where studies appeared in multiple reviews, results were consistently reported except for complex studies with multiple publications. Review conclusions were similar. For most reviews (n = 6/8; 75%), we could explain why primary data were not included; this was usually due to the scope of the reviews. Most reviews tended to be narrow in focus, making it difficult to gain an understanding of the field as a whole. Conclusions In areas where evaluating impact is known to be difficult, review findings often relate to uncertainty of data and methodologies, rather than providing substantive findings for policy and practice. Systematic ?maps? of research can help identify where existing research is robust enough for multiple in-depth syntheses and also show where new reviews are needed. To ensure quality and fidelity, review authors should systematically search for all publications from complex studies. Other relevant reviews should be searched for and cited to facilitate knowledge-building
Genomes and Characterization of Phages Bcep22 and BcepIL02, Founders of a Novel Phage Type in Burkholderia cenocepacia
Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages
Implementing and operationalising integrative approaches to sustainability in Higher Education: The role of project-oriented learning.
Higher education institutions across the world are increasingly placing an emphasis on students’ acquisition of a broader range of skills or attributes within the taught curriculum, which should lead to a widening of their chances of academic success, in particular in the employment market. Among other issues, matters related to sustainable development are playing a key role, but many universities do not yet cater for integrative approaches, which may help them to approach sustainability issues in a transformative way. It is therefore necessary to develop new approaches and methods, which may address this gap. Based on the importance of meeting this perceived research need, this paper defines the role of project-oriented learning, also designated as Project Based Learning, as a tool to support integrative approaches to sustainability in a higher education context. The scientific value of the paper lies in the provision of some examples of successful approaches to Project Based Learning and the identification of some of the trends that characterise it. The paper makes clear why project-oriented learning should be more widely used in support of integrative approaches to sustainability, and why it needs to become part of the routine of higher education institutions. The outline of some of the initiatives recently and currently being undertaken may inspire others and assist in the implementation of Project Based Learning
Characterization of Modular Bacteriophage Endolysins from Myoviridae Phages OBP, 201ϕ2-1 and PVP-SE1
Peptidoglycan lytic enzymes (endolysins) induce bacterial host cell lysis in the late phase of the lytic bacteriophage replication cycle. Endolysins OBPgp279 (from Pseudomonas fluorescens phage OBP), PVP-SE1gp146 (Salmonella enterica serovar Enteritidis phage PVP-SE1) and 201ϕ2-1gp229 (Pseudomonas chlororaphis phage 201ϕ2-1) all possess a modular structure with an N-terminal cell wall binding domain and a C-terminal catalytic domain, a unique property for endolysins with a Gram-negative background. All three modular endolysins showed strong muralytic activity on the peptidoglycan of a broad range of Gram-negative bacteria, partly due to the presence of the cell wall binding domain. In the case of PVP-SE1gp146, this domain shows a binding affinity for Salmonella peptidoglycan that falls within the range of typical cell adhesion molecules (Kaff = 1.26×106 M−1). Remarkably, PVP-SE1gp146 turns out to be thermoresistant up to temperatures of 90°C, making it a potential candidate as antibacterial component in hurdle technology for food preservation. OBPgp279, on the other hand, is suggested to intrinsically destabilize the outer membrane of Pseudomonas species, thereby gaining access to their peptidoglycan and exerts an antibacterial activity of 1 logarithmic unit reduction. Addition of 0.5 mM EDTA significantly increases the antibacterial activity of the three modular endolysins up to 2–3 logarithmic units reduction. This research work offers perspectives towards elucidation of the structural differences explaining the unique biochemical and antibacterial properties of OBPgp279, PVP-SE1gp146 and 201ϕ2-1gp229. Furthermore, these endolysins extensively enlarge the pool of potential antibacterial compounds used against multi-drug resistant Gram-negative bacterial infections
A proposed new bacteriophage subfamily: “Jerseyvirinae”
© 2015, Springer-Verlag Wien. Based on morphology and comparative nucleotide and protein sequence analysis, a new subfamily of the family Siphoviridae is proposed, named “Jerseyvirinae” and consisting of three genera, “Jerseylikevirus”, “Sp3unalikevirus” and “K1glikevirus”. To date, this subfamily consists of 18 phages for which the genomes have been sequenced. Salmonella phages Jersey, vB_SenS_AG11, vB_SenS-Ent1, vB_SenS-Ent2, vB_SenS-Ent3, FSL SP-101, SETP3, SETP7, SETP13, SE2, SS3e and wksl3 form the proposed genus “Jerseylikevirus”. The proposed genus “K1glikevirus” consists of Escherichia phages K1G, K1H, K1ind1, K1ind2 and K1ind3. The proposed genus “Sp3unalikevirus” contains one member so far. Jersey-like phages appear to be widely distributed, as the above phages were isolated in the UK, Canada, the USA and South Korea between 1970 and the present day. The distinguishing features of this subfamily include a distinct siphovirus morphotype, genomes of 40.7-43.6kb (49.6-51.4mol% G+C), a syntenic genome organisation, and a high degree of nucleotide sequence identity and shared proteins. All known members of the proposed subfamily are strictly lytic
ATP-binding cassette (ABC) transporters in normal and pathological lung
ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases
- …