85 research outputs found

    FGFR3 Activates RSK2 to Mediate Hematopoietic Transformation through Tyrosine Phosphorylation of RSK2 and Activation of the MEK/ERK Pathway

    Get PDF
    SummaryTo better understand the signaling properties of oncogenic FGFR3, we performed phospho-proteomics studies to identify potential downstream signaling effectors that are tyrosine phosphorylated in hematopoietic cells expressing constitutively activated leukemogenic FGFR3 mutants. We found that FGFR3 directly tyrosine phosphorylates the serine/threonine kinase p90RSK2 at Y529, which consequently regulates RSK2 activation by facilitating inactive ERK binding to RSK2 that is required for ERK-dependent phosphorylation and activation of RSK2. Moreover, inhibition of RSK2 by siRNA or a specific RSK inhibitor fmk effectively induced apoptosis in FGFR3-expressing human t(4;14)-positive myeloma cells. Our findings suggest that FGFR3 mediates hematopoietic transformation by activating RSK2 in a two-step fashion, promoting both the ERK-RSK2 interaction and subsequent phosphorylation of RSK2 by ERK

    Giant thermal hysteresis in Verwey transition of single domain Fe3O4 nanoparticles

    Get PDF
    Most interesting phenomena of condensed matter physics originate from interactions among different degrees of freedom, making it a very intriguing yet challenging question how certain ground states emerge from only a limited number of atoms in assembly. This is especially the case for strongly correlated electron systems with overwhelming complexity. The Verwey transition of Fe3O4 is a classic example of this category, of which the origin is still elusive 80 years after the first report. Here we report, for the first time, that the Verwey transition of Fe3O4 nanoparticles exhibits size-dependent thermal hysteresis in magnetization, 57Fe NMR, and XRD measurements. The hysteresis width passes a maximum of 11 K when the size is 120 nm while dropping to only 1 K for the bulk sample. This behavior is very similar to that of magnetic coercivity and the critical sizes of the hysteresis and the magnetic single domain are identical. We interpret it as a manifestation of charge ordering and spin ordering correlation in a single domain. This work paves a new way of undertaking researches in the vibrant field of strongly correlated electron physics combined with nanoscience.Comment: 13 pages, 4 figure

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    Simulation gas-solid flow in the downer with new structure-based drag model

    Full text link
    To improve the accuracy of simulating the heterogeneous flow in a circulating fluidized bed (CFB) downer, a drag model based on the local structure of the gas-solid flow using the multi-scale method has been developed in this work. New stability conditions according to the characteristics of gas-solid flow in the CFB downer have been derived to solve the non-linear model equations for obtaining structure parameters. New structure-based drag coeffidents were incorporated into the two-fluid model (TFM) to simulate the hydrodynamics of the gas-solid flow in the downer. Simulation results showed that the predictions with the new structure-based drag model are more accurate than those with the Wen-Yu drag model. The predictions with the structure-based drag model showed the heterogeneous flow of the gas-solid flow and the cluster phenomenon. The fluctuation of the instantaneous solid fraction of the experiment can be reasonably reproduced by the simulation using the new structure-based drag model, whereas the fluctuation of the instantaneous-solid fraction cannot be captured by the Wen-Yu drag model. The experimental data showed that the radial profiles of the solid fraction are a typical core-annular structure, and the simulated results with new structure-based drag model agreed well with experimental data from different cases. The axial profiles of the simulated pressure gradient, solid concentration and particles velocity distinctly exhibit the axial structure of the gas-solid flow in the downer, which agreed with the experimental results. (C) 2017 Elsevier B.V. All rights reserved.</p

    Regulation of Connexin Gap Junctions and Hemichannels by Calcium and Calcium Binding Protein Calmodulin

    Full text link
    Connexins are the structural components of gap junctions and hemichannels that mediate the communication and exchange of small molecules between cells, and between the intracellular and extracellular environment, respectively. Connexin (Cx) 46 is predominately expressed in lens fiber cells, where they function in maintaining the homeostasis and transparency of the lens. Cx46 mutations are associated with impairment of channel function, which results in the development of congenital cataracts. Cx46 gap junctions and hemichannels are closely regulated by multiple mechanisms. Key regulators of Cx46 channel function include Ca2+ and calmodulin (CaM). Ca2+ plays an essential role in lens homeostasis, and its dysregulation causes cataracts. Ca2+ associated CaM is a well-established inhibitor of gap junction coupling. Recent studies suggest that elevated intracellular Ca2+ activates Cx hemichannels in lens fiber cells and Cx46 directly interacts with CaM. A Cx46 site mutation (Cx46-G143R), which is associated with congenital Coppock cataracts, shows an increased Cx46-CaM interaction and this interaction is insensitive to Ca2+, given that depletion of Ca2+ reduces the interaction between CaM and wild-type Cx46. Moreover, inhibition of CaM function greatly reduces the hemichannel activity in the Cx46 G143R mutant. These research findings suggest a new regulatory mechanism by which enhanced association of Cx46 with CaM leads to the increase in hemichannel activity and dysregulation may lead to cataract development. In this review, we will first discuss the involvement of Ca2+/CaM in lens homeostasis and pathology, and follow by providing a general overview of Ca2+/CaM in the regulation of Cx46 gap junctions. We discuss the most recent studies concerning the molecular mechanism of Ca2+/CaM in regulating Cx46 hemichannels. Finally, we will offer perspectives of the impacts of Ca2+/CaM and dysregulation on Cx46 channels and vice versa

    Connexin Gap Junctions and Hemichannels in Modulating Lens Redox Homeostasis and Oxidative Stress in Cataractogenesis

    Full text link
    The lens is continuously exposed to oxidative stress insults, such as ultraviolet radiation and other oxidative factors, during the aging process. The lens possesses powerful oxidative stress defense systems to maintain its redox homeostasis, one of which employs connexin channels. Connexins are a family of proteins that form: (1) Hemichannels that mediate the communication between the intracellular and extracellular environments, and (2) gap junction channels that mediate cell-cell communication between adjacent cells. The avascular lens transports nutrition and metabolites through an extensive network of connexin channels, which allows the passage of small molecules, including antioxidants and oxidized wastes. Oxidative stress-induced post-translational modifications of connexins, in turn, regulates gap junction and hemichannel permeability. Recent evidence suggests that dysfunction of connexins gap junction channels and hemichannels may induce cataract formation through impaired redox homeostasis. Here, we review the recent advances in the knowledge of connexin channels in lens redox homeostasis and their response to cataract-related oxidative stress by discussing two major aspects: (1) The role of lens connexins and channels in oxidative stress and cataractogenesis, and (2) the impact and underlying mechanism of oxidative stress in regulating connexin channels

    Identification of a disulfide bridge important for transport function of SNAT4 neutral amino acid transporter.

    Get PDF
    SNAT4 is a member of system N/A amino acid transport family that primarily expresses in liver and muscles and mediates the transport of L-alanine. However, little is known about the structure and function of the SNAT family of transporters. In this study, we showed a dose-dependent inhibition in transporter activity of SNAT4 with the treatment of reducing agents, dithiothreitol (DTT) and Tris(2-carboxyethyl)phosphine (TCEP), indicating the possible involvement of disulfide bridge(s). Mutation of residue Cys-232, and the two highly conserved residues Cys-249 and Cys-321, compromised the transport function of SNAT4. However, this reduction was not caused by the decrease of SNAT4 on the cell surface since the cysteine-null mutant generated by replacing all five cysteines with alanine was equally capable of being expressed on the cell surface as wild-type SNAT4. Interestingly, by retaining two cysteine residues, 249 and 321, a significant level of L-alanine uptake was restored, indicating the possible formation of disulfide bond between these two conserved residues. Biotinylation crosslinking of free thiol groups with MTSEA-biotin provided direct evidence for the existence of a disulfide bridge between Cys-249 and Cys-321. Moreover, in the presence of DTT or TCEP, transport activity of the mutant retaining Cys-249 and Cys-321 was reduced in a dose-dependent manner and this reduction is gradually recovered with increased concentration of H2O2. Disruption of the disulfide bridge also decreased the transport of L-arginine, but to a lesser degree than that of L-alanine. Together, these results suggest that cysteine residues 249 and 321 form a disulfide bridge, which plays an important role in substrate transport but has no effect on trafficking of SNAT4 to the cell surface
    corecore