216 research outputs found

    Subtype and targeted therapy for TNBC

    Get PDF
    Triple-negative breast cancer (TNBC) is a heterogenous disease. For personalized medicine, it is essential to identify and classify tumor subtypes to develop effective therapeutic strategies. Although gene expression profiling has identified several TNBC subtypes, classification of these tumors remains complex. Most TNBCs exhibit an aggressive phenotype, but some rare types have a favorable clinical course. In this review, we summarize the classification and characteristics related to the various TNBC subtypes, including the rare types. Therapeutic methods that are suitable for each subtype are also discussed. Of the intrinsic breast cancer subtypes identified by gene expression analysis, the basal-like subtype specifically displayed decreased expression of an estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) cluster. We also present results that characterize the TNBC and basal-like phenotypes. TNBC may be categorized into four major classes : basal-like, immune-enriched, mesenchymal, and luminal androgen receptor. Therapeutic strategies for each subtype have been proposed along with newly approved targeted therapies for TNBC, such as immune checkpoint inhibitors. Understanding the classification of TNBC based on gene expression profiling in association with clinicopathological factors will facilitate accurate pathological diagnosis and effective treatment selection

    非アルコール性脂肪性肝炎における肝細胞へのα-synucleinの蓄積と病理組織学的診断における有用性

    Get PDF
    Backgrounds: Nonalcoholic steatohepatitis (NASH) is characterized by fat deposition, inflammation, and hepatocellular damage. The diagnosis of NASH is confirmed pathologically, and hepatocyte ballooning is an important finding for definite diagnosis. Recently, α-synuclein deposition in multiple organs was reported in Parkinson’s disease. Since it was reported that α synuclein is taken up by hepatocytes via connexin 32, the expression of α-synuclein in the liver in NASH is of interest. The accumulation of α-synuclein in the liver in NASH was investigated. Immunostaining for p62, ubiquitin, and α-synuclein was performed, and the usefulness of immunostaining in pathological diagnosis was examined. Methods: Liver biopsy tissue specimens from 20 patients were evaluated. Several antibodies against α-synuclein, as well as antibodies against connexin 32, p62, and ubiquitin were used for immunohistochemical analyses. Staining results were evaluated by several pathologists with varying experience, and the diagnostic accuracy of ballooning was compared. Results: Polyclonal α-synuclein antibody, not the monoclonal antibody, reacted with eosinophilic aggregates in ballooning cells. Expression of connexin 32 in degenerating cells was also demonstrated. Antibodies against p62 and ubiquitin also reacted with some of the ballooning cells. In the pathologists’ evaluations, the highest interobserver agreement was obtained with hematoxylin and eosin (H&E)-stained slides, followed by slides immunostained for p62 and α-synuclein, and there were cases with different results between H&E staining and immunostaining Conclusion: These results indicate the incorporation of degenerated α-synuclein into ballooning cells, suggesting the involvement of α-synuclein in the pathogenesis of NASH. The combination of immunostaining including polyclonal α-synuclein may contribute to improving the diagnosis of NASH

    Efficacy of mizoribine pulse therapy in patients with rheumatoid arthritis who show a reduced or insufficient response to infliximab

    Get PDF
    The efficacy of infliximab, a chimeric antibody against tumor necrosis factor-α used to treat patients with rheumatoid arthritis (RA), tends to decrease as patients develop human antichimeric antibody against infliximab (HACA). The clinical study reported here was designed to evaluate the efficacy of mizoribine (MZR) pulse therapy in patients who show a reduced or insufficient response to infliximab. Ten RA patients who had active arthritis despite infliximab therapy were treated with MZR pulse therapy at a dose of 100 mg MZR and methotrexate (MTX) and the disease activity assessed at baseline and at weeks 4–8, 12–16, and 20–24. The dose was increased to 150 mg in those patients who showed an insufficient response to MZR. The mean 28-joint disease activity score (DAS28) at weeks 12–16 and 20–24 of therapy was significantly lower than that at baseline. A moderate or good European League against Rheumatism (EULAR) response was achieved in seven patients (70%) at weeks 12–16 and in five patients (50%) at weeks 20–24. The dose of 150 mg MZR was effective in one of the three patients who showed an insufficient response to pulse therapy with 100 mg MZR. Based on these results, we propose that MZR pulse therapy should be attempted before the patient is switched to other biologics

    Characteristic Upregulation of Glucose-Regulated Protein 78 in an Early Lesion Negative for Hitherto Established Cytochemical Markers in Rat Hepatocarcinogenesis

    Get PDF
    Previously, we reported α2-macroglobulin (α2M) to be a novel marker characteristic of rat hepatocellular preneoplastic and neoplastic lesions negative for hitherto well-established markers. In the present study, we further examined other candidate markers with specificity for the same type of lesions. Glutathione S-transferase-placental form (GST-P)-negative hepatocellular altered foci (HAF) were generated using a two-stage (initiation and promotion) carcinogenesis protocol with N,N-diethylnitrosamine (DEN) and either Wy-14,643 or clofibrate, two peroxisome proliferators. Microarray analysis using total RNAs isolated from laser-microdissected GST-P-negative HAF (amphophilic cell foci) and adjacent normal tissues was conducted along with immunohistochemistry and real-time RT-PCR. Staining for glucose-regulated protein 78 (GRP78) was detected in GST-P-negative HAF and hepatocellular adenomas, and slightly increased GRP78 mRNA expression was observed in the lesions by real-time RT-PCR analysis. Thus, an early increase of GRP78 expression in hepatocarcinogenesis is likely a feature of the amphophilic subset of HAF

    PESI-MS for Diagnostic Cytology

    Get PDF
    Objectives: Cytology and histology are 2 indispensable diagnostic tools for cancer diagnosis, which are rapidly increasing in importance with aging populations. We applied mass spectrometry (MS) as a rapid approach for swiftly acquiring nonmorphological information of interested cells. Conventional MS, which primarily rely on promoting ionization by pre-applying a matrix to cells, has the drawback of time-consuming both on data acquisition and analysis. As an emerging method, probe electrospray ionization-MS (PESI-MS) with a dedicated probe is capable to pierce sample and measure specimen in small amounts, either liquid or solid, without the requirement for sample pretreatment. Furthermore, PESI-MS is timesaving compared to the conventional MS. Herein, we investigated the capability of PESI-MS to characterize the cell types derived from the respiratory tract of human tissues. Study Design: PESI-MS analyses with DPiMS-2020 were performed on various type of cultured cells including 5 lung squamous cell carcinomas, 5 lung adenocarcinomas, 5 small-cell carcinomas, 4 malignant mesotheliomas, and 2 normal controls. Results: Several characteristic peaks were detected at around m/z 200 and 800 that were common in all samples. As expected, partial least squares-discriminant analysis of PESI-MS data distinguished the cancer cell types from normal control cells. Moreover, distinct clusters divided squamous cell carcinoma from adenocarcinoma. Conclusion: PESI-MS presented a promising potential as a novel diagnostic modality for swiftly acquiring specific cytological information
    corecore