900 research outputs found

    CFD Analysis of Non-Newtonian Pseudo Plastic Liquid Flow through Bends

    Get PDF
    Non-Newtonian pseudo plastic liquid flow through different types of 0.0127 m diameter pipe bends as well as straight pipe have been investigated experimentally to evaluate frictional pressure drop across the bends in laminar and water flow in turbulent condition. We have studied here the effect of flow rate, bend angle, fluid behavior on static pressure and pressure drop. A Computational Fluid Dynamics (CFD) based software is used to predict the static pressure, pressure drop, shear stress, shear strain, flow structure, friction factor, loss co- efficient inside the bends for Sodium Carboxy Methyl Cellulose (SCMC) solution as a non-Newtonian pseudo plastic fluids and water as a Newtonian fluid. Laminar Non-Newtonian pseudo plastic Power law model is used for SCMC solution to numerically solve the continuity and the momentum equations. The experimental data are compared with the CFD generated data and is well matched. The software predicted data may be used to solve any industrial problem and also to design various equipment

    Heating of the auroral ionosphere by traveling ionospheric disturbances initiated by atmospheric gravity waves

    Get PDF
    In the presence of perturbations of the thermospheric auroral region produced by traveling ionospheric disturbances during the propagation of atmospheric gravity waves, an analytical expression of the velocity of the thermospheric plasma is derived through magnetohydrodynamic formalism. The expressions of the Joule heating and the viscous heating are derived, and their rates of variation are presented. A threshold height for their transition has been determined from their ratio, which is in agreement with the experimental data. The analysis indicates that the time taken by the thermospheric plasma to reach a steady-state corresponds to the nature of the traveling ionospheric disturbances in the medium

    Asn12 and Asn278: Critical Residues for In Vitro Biological Activity of Reteplase

    Get PDF
    Reteplase (rPA) is a thrombolytic agent used for the treatment of acute myocardial infarction. We studied the expression of rPA and its selected asparagine mutants after integration into the Pichia genome. Though methanol induction of the native and the rPA mutants showed similar expression levels (~200–250 mg/L), the mutants displayed significant loss of protease activity. Strikingly, the clot lysis activities of these mutants were considerably different. While mutation of Asn12 (N12P) of the Kringle 2 domain showed delayed clot lysis activity (t1/2 = 38 min) compared to the native rPA (t1/2 = 33 min), a faster rate of clot lysis (t1/2 = 27 min) was observed when the Asn278 (N278S) of the serine protease domain was mutated. Interestingly, the slowest clot lysis activity (t1/2 = 49 min) demonstrated by the double mutant (N12P, N278S) suggests the dominant role of Asn12 in regulating the fibrinolytic activity of rPA. The results presented in this paper indicate that the fibrinolytic and the proteolytic activities of rPA are independent of each other

    CFD Analysis for Non-Newtonian Pseudo Plastic Liquid Flow Through Small Diameter U-BEND

    Get PDF
    Experimental investigation has been carried out in order to study the pressure drop for non-Newtonian liquid flow through four different U-bends. Here, we have considered the internal diameter of the bend as 0.0127 m, radius of curvature (m) as 0.06 ≤ Rcb ≤ 0.20, and the non-Newtonian liquid flow rate (Ql×10-4 m3/s) as 1.18 to 4.5. The effects of different variables such as liquid flow rate, radius of curvature, pseudo plasticity of the liquid on the frictional pressure drop have been investigated. Numerical modeling is carried out using Fluent 6.3 software to find its applicability. The computational fluid dynamic (CFD) simulations are carried out using laminar non-Newtonian pseudo plastic power law model. Laminar non-Newtonian pseudo plastic power law model is used here as the SCMC (Sodium Carboxy Methyl Cellulose) solution flow through the bend behaves as non-Newtonian pseudo plastic fluid in laminar condition. The simulated results predict the flow structure, pressure drop, static pressure, shear stress, shear strain, Dean Vortices, friction factor and loss coefficients. The effect of pseudo plasticity, angle, radius of curvature, and Reynolds number on pressure drop, loss coefficient, friction factor and flow behavior inside the bend have also been explained elaborately and compared the results with water. The CFD simulation results are used to compare with the experimental data and observe a very good agreement with the experimental values
    corecore