3,975 research outputs found

    Network Community Detection on Metric Space

    Full text link
    Community detection in a complex network is an important problem of much interest in recent years. In general, a community detection algorithm chooses an objective function and captures the communities of the network by optimizing the objective function, and then, one uses various heuristics to solve the optimization problem to extract the interesting communities for the user. In this article, we demonstrate the procedure to transform a graph into points of a metric space and develop the methods of community detection with the help of a metric defined for a pair of points. We have also studied and analyzed the community structure of the network therein. The results obtained with our approach are very competitive with most of the well-known algorithms in the literature, and this is justified over the large collection of datasets. On the other hand, it can be observed that time taken by our algorithm is quite less compared to other methods and justifies the theoretical findings

    Bioconversion of eugenol into food flavouring agent vanillin

    Get PDF
    Microorganisms have the ability to chemically modify a wide variety of organic compounds by a process referred to as biological or microbial transformation, or in general, bioconversion. The microbial cells and their catalytic machinery (enzymes) accept a wide array of complex molecules as substrates, yielding products with unparallel chiral (enantio-), positional (region-) and chemical (chemo-) selectivity through various biochemical reactions. The present study was formulated on the objective of the conversion of abundantly available phytomolecules eugenol into vanillin, a compound of industrial importance, using microorganisms Aspergillus flavus, Aspergillus niger and Pseudomonas aeruginosa. These microbes were found to be capable of converting eugenol to industrially important cost-effective products, vanillin (used as flavouring agent). The results were analyzed using thin layer and gas chromatographic techniques. Our results demonstrated that A. flavus, A. niger and P. aerouginosa were able to transform eugenol to vanillin. Our findings may provide a novel approach for the production of cost-effective vanillin using microorganisms
    • …
    corecore