4 research outputs found

    Electrokinetic removal of heavy metals from soil

    Get PDF
    Removal of heavy metal ions from soils by electrokinetic treatment has several advantages. The extent of removal, however, is both soil specific and ion specific. The conditions to be maintained have to be established based on laboratory studies. With a view to maximize the removal of metal ions the trends of removal of heavy metal ions such as iron, nickel and cadmium form a natural Indian kaolinitic red earth during different conditions maintained in the electrokinetic extraction process are studied. A laboratory electrokinetic extraction apparatus was assembled for this purpose. Attempts are also made to elucidate the mechanism of removal of the metal ions from soil. The composition of the flushing fluid, voltage and duration of extraction are varied. While dilute acetic acid has been used to neutralize the alkalinity that develops at the cathode, EDTA solution has been used to desorb heavy metals from clay surface. Generally the extent of removal was proportional to the osmotic flow. Nickel and Cadmium are more effectively removed than iron. The percentage removal of Ni is generally proportional to the osmotic flow but shows sensitivity to the pH of the system. There is an optimum voltage for removal of metal ions from soil. The removal of iron was negligible under different conditions studied

    Citrus for wellness: Exploring the bioactive properties of Citrus medica fruit peel with emphasis on its anticancer, antioxidant, antimicrobial and anthelmintic properties

    Get PDF
    Citrus medica (Citron) is an underutilised plant consisting of various bioactive elements with numerous medicinal benefits. The present study aimed to evaluate the bioactive properties, including anthelmintic, antimicrobial, antioxidant and anticancer activities, of chloroform extract obtained from the of fruit peel of C. medica. The different types of phytochemicals present in the chloroform extract were analysed using GC-MS. The major components detected included n-hexadecanoic acid, octadecanoic acid, t-tetradecenal, 1-nonadecene etc. Anthelmintic study was conducted using Eisenia fetida as a test organism, revealing a significant anthelmintic effect in the C. medica fruit peel extract compared to the standard drug. Antimicrobial properties were assessed against five test bacterial and fungal strains. Antibacterial tests showed zones of inhibition ranging from 8 to 11 mm, while no prominent zones of inhibition were observed in antifungal tests. The DPPH assay demonstrated significant antioxidant properties of Citron fruit peel extract compared to the standard ascorbic acid. The Chloroform extract of citron fruit peel exhibited significant cytotoxic properties against FaDu (human hypopharyngeal tumour) cell line. The present study indicates the potential of the chloroform extract of C. medica fruit peel to be employed as an anthelmintic, antibacterial, antioxidant and anticancer agent. Hence, it emphasises the prominence that can be given to the dietary consumption of citrus fruit peel in various forms, such as dried peel, powder etc

    ATP driven clathrin dependent entry of carbon nanospheres prefer cells with glucose receptors

    Full text link
    Abstract Background Intrinsically fluorescent glucose derived carbon nanospheres (CSP) efficiently enter mammalian cells and also cross the blood brain barrier (BBB). However, the mechanistic details of CSP entry inside mammalian cells and its specificity are not known. Results In this report, the biochemical and cellular mechanism of CSP entry into the living cell have been investigated. By employing confocal imaging we show that CSP entry into the mammalian cells is an ATP-dependent clathrin mediated endocytosis process. Zeta potential studies suggest that it has a strong preference for cells which possess high levels of glucose transporters such as the glial cells, thereby enabling it to target individual organs/tissues such as the brain with increased specificity. Conclusion The endocytosis of Glucose derived CSP into mammalian cells is an ATP dependent process mediated by clathrin coated pits. CSPs utilize the surface functional groups to target cells containing glucose transporters on its membrane thereby implicating a potential application for specific targeting of the brain or cancer cells.</p
    corecore