3 research outputs found

    Stimulation of angiogenesis using single-pulse low-pressure shock wave treatment

    No full text
    Endothelial cells respond to mechanical stimuli such as stretch. This property can be exploited with caution to induce angiogenesis which will have immense potential to treat pathological conditions associated with insufficient angiogenesis. The primary aim of this study is to test if low-pressure shock waves can be used to induce angiogenesis. Using a simple diaphragm-based shock tube, we demonstrate that a single pulse of low pressure (0.4bar) shock wave is enough to induce proliferation in bovine aortic endothelial cells and human pulmonary microvascular endothelial cells. We show that this is associated with enhanced Ca++ influx and phosphorylation of phosphatidylinositol-3-kinase (PI3K) which is normally observed when endothelial cells are exposed to stretch. We also demonstrate the pro-angiogenic effect of shock waves of single pulse (per dose) using murine back punch wound model. Shock wave treated mice showed enhanced wound-induced angiogenesis as reflected by increased vascular area and vessel length. They also showed accelerated wound closure compared to control mice. Overall, our study shows that just a single pulse/shot (per dose) of shock waves can be used to induce angiogenesis. Importantly, we demonstrate this effect using a pulse of low-pressure shock waves (0.4bar, in vitro and 0.15bar, in vivo).Key messagesLow-pressure single-pulse shock waves can induce endothelial cell migration and proliferation.This effect is endothelial cell specific.These shock waves enhance wound-induced angiogenesis in vivo.These shock waves can also accelerate wound healing in vivo

    Let-7a-regulated translational readthrough of mammalian AGO1 generates a microRNA pathway inhibitor

    No full text
    Translational readthrough generates proteins with extended C-termini, which often possess distinct properties. Here, we have used various reporter assays to demonstrate translational readthrough of AGO1 mRNA. Analysis of ribosome profiling data and mass spectrometry data provided additional evidence for translational readthrough of AGO1. The endogenous readthrough product, Ago1x, could be detected by a specific antibody both in vitro and in vivo. This readthrough process is directed by a cis sequence downstream of the canonical AGO1 stop codon, which is sufficient to drive readthrough even in a heterologous context. This cis sequence has a let-7a miRNA-binding site, and readthrough is promoted by let-7a miRNA. Interestingly, Ago1x can load miRNAs on target mRNAs without causing post-transcriptional gene silencing, due to its inability to interact with GW182. Because of these properties, Ago1x can serve as a competitive inhibitor of miRNA pathway. In support of this, we observed increased global translation in cells overexpressing Ago1x. Overall, our results reveal a negative feedback loop in the miRNA pathway mediated by the translational readthrough product of AGO1
    corecore