8 research outputs found

    Hansenula polymorpha Swi1p and Snf2p are essential for methanol utilisation

    Get PDF
    We have cloned the Hansenula polymorpha SWI1 and SNF2 genes by functional complementation of mutants that are defective in methanol utilisation. These genes encode proteins similar to Saccharomyces cerevisiae Swi1p and Snf2p, which are subunits of the SWI/SNF complex. This complex belongs to the family of nucleosome-remodeling complexes that play a role in transcriptional control of gene expression. Analysis of the phenotypes of constructed H. polymorpha SWI1 and SNF2 disruption strains indicated that these genes are not necessary for growth of cells on glucose, sucrose, or various organic nitrogen sources which involve the activity of peroxisomal oxidases. Both disruption strains showed a moderate growth defect on glycerol and ethanol, but were fully blocked in methanol utilisation. In methanol-induced cells of both disruption strains, two peroxisomal enzymes involved in methanol metabolism, alcohol oxidase and dihydroxyacetone synthase, were hardly detectable, whereas in wild-type cells these proteins were present at very high levels. We show that the reduction in alcohol oxidase protein levels in H. polymorpha SWI1 and SNF2 disruption strains is due to strongly reduced expression of the alcohol oxidase gene. The level of Pex5p, the receptor involved in import of alcohol oxidase and dihydroxyacetone synthase into peroxisomes, was also reduced in both disruption strains compared to that in wild-type cells.

    Structural and functional aspects of peroxisomal membranes in yeasts

    No full text
    The peroxisomal membrane compartmentalizes specific metabolic functions in the intermediary metabolism of various aerobic eukarya. In yeast, peroxisomal membranes are typified by their small width (+/- 7-8 nm) and absence of large integral membrane proteins in freeze-etch replicas. They show a unique polypeptide profile which, in contrast to their phospholipid composition, differs from that of other membranes in the cell. Part of these proteins are substrate-inducible and are probably related to specific peroxisomal function(s). In vivo, the observed proton motive force across the peroxisomal membrane may play a role in the function of the organelle in that it contributes to the driving force required for selective transport of various enzyme substrates and/or metabolic intermediates. To date only few peroxisomal membrane proteins (PMPs) have been functionally characterized. A major constitutive 31-kDa PMP present in the peroxisomal membrane of Hansenula polymorpha has been purified and was shown to display pore-forming properties. In addition, a peroxisomal H+-ATPase has been identified which most probably is involved in the generation/maintenance of the in vivo pH gradient across the peroxisomal membrane. Other functions of peroxisomal membrane proteins remain obscure although the first genes encoding yeast PMPs are now being cloned and sequenced. Studies on peroxisome-deficient yeast mutants revealed that specific peroxisome functions are strictly dependent on the intactness of the peroxisomal membrane. In this contribution several examples are presented of metabolic disorders due to peroxisomal malfunction in yeast.</p

    A proton-translocating adenosine triphosphatase is associated with the peroxisomal membrane of yeasts

    No full text
    The association of an ATPase with the yeast peroxisomal membrane was established by both biochemical and cytochemical procedures. Peroxisomes were purified from protoplast homogenates of the methanol-grown yeast Hansenula polymorpha by differential and sucrose gradient centrifugation. Biochemical analysis revealed that ATPase activity was associated with the peroxisomal peak fractions which were identified on the basis of alcohol oxidase and catalase activity. The properties of this ATPase closely resembled those of the mitochondrial ATPase of this yeast. The enzyme was Mg2+-dependent, had a pH optimum of approximately 8.5 and was sensitive to N,N'-dicyclohexylcarbodiimide (DCCD), oligomycin and azide, but not to vanadate. A major difference was the apparent Km for ATP which was 4-6 mM for the peroxisomal ATPase compared to 0.6-0.9 mM for the mitochondrial enzyme. Cytochemical experiments indicated that the peroxisomal ATPase was associated with the membranes surrounding these organelles. After incubations with CeCl3 and ATP specific reaction products were localized on the peroxisomal membrane, both when unfixed isolated peroxisomes or formaldehyde-fixed protoplasts were used. This staining was strictly ATP-dependent; in controls performed i) in the absence of substrate, ii) in the presence of glycerol 2-phosphate instead of ATP, or iii) in the presence of DCCD, staining was invariably absent. Similar staining patterns were observed in subcellular fractions and protoplasts of Candida utilis and Trichosporon cutaneum X4, grown in the presence of ethanol/ethylamine or ethylamine, respectively.

    Expression and targeting of a 47 kDa integral peroxisomal membrane protein of Candida boidinii in wild type and a peroxisome-deficient mutant of Hansenula polymorpha

    Get PDF
    A 47 kDa integral peroxisomal membrane protein (PMP47) of Candida boidinii was expressed in wild type (WT) and a temperature-sensitive (Ts6) peroxisome-deficient (per) mutant of Hansenula polymorpha. The subcellular location of PMP47 appeared to be dependent on the level of expression. At low expression levels PMP47 was sorted to the peroxisomal membrane; however, in Ts6 cells grown at restrictive temperatures (which lack intact peroxisomes) PMP47 was solely located in small cytosolic aggregates, together with homologous H. polymorpha PMP’s. At enhanced expression levels, however, part of the protein also became incorporated into mitochondria, both in transformed WT and Ts6 cells.

    Ethanol metabolism in a peroxisome-deficient mutant of the yeast Hansenula polymorpha

    Get PDF
    This paper describes ethanol metabolism in a peroxisome-deficient (PER) mutant of Hansenula polymorpha. The PER mutant was able to use ethanol as sole-carbon source but showed reduced growth rates compared to wild-type cells together with a reduced rate of ethanol utilization under µmax conditions. In chemostat cultures at low-dilution rates, the activities of alcohol dehydrogenase, isocitrate lyase and malate synthase were comparable in wild-type and PER cells. In PER cells the two latter enzymes, exclusively microbody-bound in wild-type cells, were active in the cytosol. The possible advantage of intact microbodies in the intermediary metabolism of ethanol in H. polymorpha is discussed.

    Permeability properties of peroxisomal membranes from yeasts

    Get PDF
    We have studied the permeability properties of intact peroxisomes and purified peroxisomal membranes from two methylotrophic yeasts. After incorporation of sucrose and dextran in proteoliposomes composed of asolectin and peroxisomal membranes isolated from the yeasts Hansenula polymorpha and Candida boidinii a selective leakage of sucrose occurred indicating that the peroxisomal membranes were permeable to small molecules. Since the permeability of yeast peroxisomal membranes in vitro may be due to the isolation procedure employed, the osmotic stability of peroxisomes was tested during incubations of intact protoplasts in hypotonic media. Mild osmotic swelling of the protoplasts also resulted in swelling of the peroxisomes present in these cells but not in a release of their matrix proteins. The latter was only observed when the integrity of the cells was disturbed due to disruption of the cell membrane during further lowering of the concentration of the osmotic stabilizer. Stability tests with purified peroxisomes indicated that this leak of matrix proteins was not associated with the permeability to sucrose. Various attempts to mimic the in vivo situation and generate a proton motive force across the peroxisomal membranes in order to influence the permeability properties failed. Two different proton pumps were used for this purpose namely bacteriorhodopsin (BR) and reaction center-light-harvesting complex I (RCLHI complex). After introduction of BR into the membrane of intact peroxisomes generation of a pH-gradient was not or barely detectable. Since this pump readily generated a pH-gradient in pure liposomes, these results strengthened the initial observations on the leakiness of the peroxisomal membrane fragments. Generation of a membrane potential (ΔΨ) was also not observed when RCLHI complex was introduced into vesicles of purified peroxisomal membranes. The significance of the observed permeability of isolated yeast peroxisomal membranes to small molecules with respect to current and future in vitro import studies is discussed.
    corecore