13 research outputs found

    Expression of the Alpha, Beta, and Gamma Subunits of the Interleukin-2 Receptor by Human Vascular Smooth Muscle Cells

    Get PDF
    Interleukin 2 (IL-2) is a member of the cytokine family and contributes to the proliferation, survival, and death of lymphocytes [1]. The interleukin-2 receptor (IL-2) is a tripartite receptor commonly expressed on the surfaces of many lymphoid cells and is composed of three non-covalently associated subunits, alpha (CD25), beta (CD122), and gamma (CD132) [2]. Our laboratory has previously described IL-2 receptor Beta expression by vasculature smooth muscle cells (VSMC) in mice and humans [3]. The current work expands our previous observations by assessing the expression of the alpha and gamma subunits of the IL-2R by VSMCs. Analysis of IL-2R expression in human VSMCs revealed no detectable expression of the gamma subunit and low expression of the alpha subunit. Treatment of VSMCs with IL-2 induced VSMC proliferation with a concomitant increase in the expression of the gamma subunit while having no detectable effect on expression of the alpha or beta subunits. Treatment of VSMCs with LPS decreased expression of the beta subunits and had little effect on alpha or gamma expression. Understanding the mechanisms that regulate expression of the IL-2R by VSMCs and how binding of this receptor by IL-2 mediates VSMC proliferation will provide a better understanding of vascular biology and possible mechanisms underlying vascular diseases such as atherosclerosis

    Design and Preparation of Biomass-Derived Activated Carbon Loaded TiO<sub>2</sub> Photocatalyst for Photocatalytic Degradation of Reactive Red 120 and Ofloxacin

    No full text
    The design and development of novel photocatalysts for treating toxic substances such as industrial waste, dyes, pesticides, and pharmaceutical wastes remain a challenging task even today. To this end, a biowaste pistachio-shell-derived activated carbon (AC) loaded TiO2 (AC-TiO2) nanocomposite was fabricated and effectively utilized towards the photocatalytic degradation of toxic azo dye Reactive Red 120 (RR 120) and ofloxacin (OFL) under UV-A light. The synthesized materials were characterized for their structural and surface morphology features through various spectroscopic and microscopic techniques, including high-resolution transmission electron microscope (HR-TEM), field emission scanning electron microscope (FE-SEM) along with energy dispersive spectra (EDS), diffuse reflectance spectra (DRS), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, photoluminescence spectra (PL) and BET surface area measurements. AC-TiO2 shows enhanced photocatalytic activity compared to bare TiO2 due to the change in the bandgap energy and effective charge separation. The degradation rate of dyes was affected by the bandgap of the semiconductor, which was the result of the deposition weight percentage of AC onto the TiO2. The presence of AC influences the photocatalytic activity of AC-TiO2 composite towards RR 120 and OFL degradation. The presence of heteroatoms-enriched AC enhances the charge mobility and suppresses the electron-hole recombination in AC-TiO2 composite, which enhances the photocatalytic activity of the composite. The hybrid material AC-TiO2 composite displayed a higher photocatalytic activity against Reactive Red 120 and ofloxacin. The stability of the AC-TiO2 was tested against RR 120 dye degradation with multiple runs. GC-MS analyzed the degradation intermediates, and a suitable degradation pathway was also proposed. These results demonstrate that AC-TiO2 composite could be effectively used as an ecofriendly, cost-effective, stable, and highly efficient photocatalyst

    Natural sea salt in diet ameliorates better protection compared to table salt in the doxorubicin-induced cardiac remodeling

    No full text
    Cardiac dysfunction can be prevented by addressing risk factors including unhealthy diet with other lifestyle modifications. The present study demonstrates the effect of diet mixed with sea and table salts on cardiac remodeling with respect to CKMB, renin, angiotensin II, interleukin-6 and 10. Animals divided into six groups. Normal control, Table salt (0.3%), Natural sea salt (0.3%), Doxorubicin-induced cardiac remodeling control (2 mg/kg), + Normal table salt (0.3%) and Doxorubicin  + Natural sea salt (0.3%) . Serum analysis and histopathology of heart, liver and kidney was performed. Significant variation (P < .05) observed in in CKMB for Natural sea salt group compared to Normal. Significant (P < .05) variation in renin for Normal table salt group compared to Normal. Variation in interleukin-6, 10, renin and angiotensin II give new insight in these parameters with marked variation in cellular architecture of the heart, liver and kidney. Observations suggest diet with natural sea salt demonstrated significant beneficial effect on cardiac dysfunction

    Synthesis, Crystal Structure, DFT, and Anticancer Activity of Some Imine-Type Compounds via Routine Schiff Base Reaction: An Example of Unexpected Cyclization to Oxazine Derivative

    No full text
    The synthesis, characterization, and anticancer properties of three imine-type compounds 1–3 and an unexpected oxazine derivative 4 are presented. The reaction of p-dimethylaminobenzaldehyde or m-nitrobenzaldehyde with hydroxylamine hydrochloride afforded the corresponding oximes 1–2 in good yields. Additionally, the treatment of benzil with 4-aminoantipyrine or o-aminophenol was investigated. Routinely, the Schiff base (4E)-4-(2-oxo-1,2-diphenylethylideneamino)-1,2-dihydro-1,5-dimethyl-2-phenylpyrazol-3-one 3 was obtained in the case of 4-aminoantipyrine. Unexpectedly, the reaction of benzil with o-aminophenol proceeded with cyclization to produce the 2,3-diphenyl-2H-benzo[b][1,4]oxazin-2-ol 4. The structures of compounds 3 and 4 were unambiguously determined by single crystal X-ray diffraction. Hirshfeld analysis of molecular packing revealed the importance of the O…H (11.1%), N…H (3.4%), C…H (29.4%), and C…C (1.6) interactions in the crystal stability of 3. In the case of 4, the O…H (8.8%), N…H (5.7%), and C…H (30.3%) interactions are the most important. DFT calculations predicted that both compounds have a polar nature, and 3 (3.4489 Debye) has higher polarity than 4 (2.1554 Debye). Different reactivity descriptors were calculated for both systems based on the HOMO and LUMO energies. The NMR chemical shifts were calculated and were found well correlated with the experimental data. HepG2 growth was suppressed by the four compounds more than MCF-7. The IC50 values of 1 against HepG2 and MCF-7 cell lines were the lowest, and it is considered the most promising candidate as an anticancer agent

    Fabrication of Nanofibers Based on Hydroxypropyl Starch/Polyurethane Loaded with the Biosynthesized Silver Nanoparticles for the Treatment of Pathogenic Microbes in Wounds

    No full text
    Fabrication of electrospun nanofibers based on the blending of modified natural polymer, hydroxyl propyl starch (HPS) as one of the most renewable resources, with synthetic polymers, such as polyurethane (PU) is of great potential for biomedical applications. The as-prepared nanofibers were used as antimicrobial sheets via blending with biosynthesized silver nanoparticles (AgNPs), which were prepared in a safe way with low cost using the extract of Nerium oleander leaves, which acted as a reducing and stabilizing agent as well. The biosynthesized AgNPs were fully characterized by various techniques (UV-vis, TEM, DLS, zeta potential and XRD). The obtained results from UV-vis depicted that the AgNPs appeared at a wavelength equal to 404 nm affirming the preparation of AgNPs when compared with the wavelength of extract (there are no observable peaks). The average particle size of the fabricated AgNPs that mediated with HPS exhibited a very small size (less than 5 nm) with excellent stability (more than −30 mv). In addition, the fabricated nanofibers were also fully characterized and the obtained data proved that the diameter of nanofibers was enlarged with increasing the concentration of AgNPs. Additionally, the findings illustrated that the pore sizes of electrospun sheets were in the range of 75 to 350 nm. The obtained results proved that the presence of HPS displayed a vital role in decreasing the contact angle of PU nanofibers and thus, increased the hydrophilicity of the net nanofibers. It is worthy to mention that the prepared nanofibers incorporated with AgNPs exhibited incredible antimicrobial activity against pathogenic microbes that actually presented in human wounds. Moreover, P. aeruginosa was the most sensitive species to the fabricated nanofibers compared to other tested ones. The minimal inhibitory concentrations (MICs) values of AgNPs-3@NFs against P. aeruginosa, and E. faecalis, were 250 and 500 mg/L within 15 min, respectively

    A cross-talk between gut microbiome, salt and hypertension

    No full text
    Cardiac disorders contribute to one of the major causes of fatality across the world. Hypertensive patients, even well maintained on drugs, possess a high risk to cardiovascular diseases. It is, therefore, highly important to identify different factors and pathways that lead to risk and progression of cardiovascular disorders. Several animals and human studies suggest that taxonomical alterations in the gut are involved in the cardiovascular physiology. In this article, with the help of various experimental evidences, we suggest that the host gut-microbiota plays an important in this pathway. Short chain fatty acids (SCFAs) and Trimethyl Amine -n-Oxide (TMAO) are the two major products of gut microbiome. SCFAs present a crucial role in regulating the blood pressure, while TMAO is involved in pathogenesis of atherosclerosis and other coronary artery diseases, including hypertension. We prove that there exists a triangular bridge connecting the gap between dietary salt, hypertension and gut microbiome. We also present some of the dietary interventions which can regulate and control microbiota that can prevent cardiovascular complications.We strongly believe that this article would improve the understanding the role of gut microbiota in hypertension, and will be helpful in the development of novel therapeutic strategies for prevention of hypertension through restoring gut microbiome homeostasis in the near futur

    Immobilization of Strontium Aluminate into Recycled Polycarbonate Plastics towards an Afterglow and Photochromic Smart Window

    No full text
    A transparent smart window made of recycled polycarbonate plastic (PCP) waste was prepared and immobilized with strontium aluminate phosphor nanoparticles (SAPN). It has afterglow emission, super-hydrophobicity, durability, photostability, good mechanical properties, ultraviolet protection, and high optical transmittance. To create an afterglow emission polycarbonate smart window (SAPN@PCP), recycled polycarbonate waste was integrated with various concentrations of SAPN (15–52 nm). SAP micro-scale powder was made using the solid-state high temperature method. The SAP nanoparticles were produced using the top-down method. To create a colorless plastic bulk, recycled polycarbonate waste was inserted into a hot bath. This colorless plastic was thoroughly combined with SAPN and cast to create an afterglow luminous smart window. To investigate its photoluminescence properties, spectrum profiles of excitation and emission were measured. According to the luminescence parameters, the phosphorescent colorless polycarbonate plates displayed a change in color to strong green under UV illumination and greenish-yellow in a dark box. The afterglow polycarbonate smart window displayed two emission peaks at 496 and 526 nm, and an absorption wavelength of 373 nm. Upon increasing the SAPN ratio, the hydrophobic activity, hardness, photostability, and UV protection were improved. Luminescent polycarbonate substrates with lower SAPN ratio demonstrated rapid and reversible fluorescence under UV light, while the higher SAPN content in the luminous polycarbonate substrates showed afterglow

    Titanium Dioxide/Chromium Oxide/Graphene Oxide Doped into Cellulose Acetate for Medical Applications

    No full text
    Wound dressings have been designed based on cellulose acetate encapsulated with different concentrations of chromium oxide (Cr2O3) and titanium oxide (TiO2) with/without graphene oxide (GO). This study comprises the structural, morphological, optical, thermal, and biological behavior of chromium oxide/titanium dioxide/graphene oxide-integrated cellulose acetate (CA) films. The CA-based film bond formation was introduced by functional group analysis via Fourier transform infrared (FTIR) spectroscopy. The fabricated Cr2O3/TiO2/GO@CA film SEM micrographs demonstrate transition metal oxides Cr2O3 and TiO2 on a nano-scale. The TiO2@CA shows the lowest contact angle with 30&deg;. Optically, the refractive index increases from 1.76 for CA to 2.14 for the TiO2@CA film. Moreover, normal lung cells (A138) growth examination in a function of Cr2O3/TiO2/GO@CA film concentration is conducted, introducing 93.46% with the usage of 4.9 &micro;g/mL. The resulting data showed a promising wound-healing behavior of the CA-based films

    Chemopreventive effects of Melastoma malabathricum L. extract in mammary tumor model via inhibition of oxidative stress and inflammatory cytokines

    No full text
    The objective of this study was to evaluate the anticancer effects of Melstoma malabathricum L. (MM) MDA-MB-231 human breast cancer and in vivo mammary tumor model and decipher the potential mechanism. The phyto-constituents in the extract have been identified by liquid chromatography-mass spectrometry (LC–MS). The anti-cancer activity of MM extract was tested on MDA-MB-231 human breast cancer cells. Chemical carcinogen 7,12-dimethylbenz(a)anthracene (DMBA) was used for the induction of breast cancer in rodents. Burden, volume, tumor incidence, pro-inflammatory cytokines, antioxidant parameters and mitochondrial parameters were estimated. Histological analysis was determined in mammary gland, vagina, uterus, heart, liver, lung and renal tissues. LC–MS showed the 21 phyto-constituents present in the extract of MM. MM extract showed the potent cytotoxicity against MDA-MB-231 cells and exhibited the IC50 value (14.6 μM). MM extract significantly decreased the body weight and altered the organ weight such as ovary, uterus, liver, spleen, lungs, renal, adrenal and brain tissue. MM extract significantly down-regulated the tumor incidence, tumor burden and average tumor weight at dose dependently manner. MM extract significantly altered the antioxidants activity in term of augmented the level of superoxide dismutase (SOD), catalase (CAT) and suppressed the level of malonaldehyde (MDA); pro-inflammatory cytokines levels such as reduced the level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6) in the serum, hepatic and mammary gland tissue in DMBA induced mammary gland tumor rats. MM extract significantly (P < 0.001) enhanced the activity of mitochondrial parameters include Isocitrate dehydrogenase (ICDH), succinate dehydrogenase (SDH), Malate dehydrogenase (MDH) and alpha-keto glutaraldehyde dehydrogenase (α-KGDH). The histopathological finding exhibited that MM extract has a marked reduced effect on mammary glands, mammary gland, vagina, uterus, heart, liver, lung and renal.These data provide the scientific evidence that MM extract might be used as a traditional medicine to cure the breast cancer

    Identification of novel interacts partners of ADAR1 enzyme mediating the oncogenic process in aggressive breast cancer

    No full text
    Abstract Triple-negative breast cancer (TNBC) subtype is characterized by aggressive clinical behavior and poor prognosis patient outcomes. Here, we show that ADAR1 is more abundantly expressed in infiltrating breast cancer (BC) tumors than in benign tumors. Further, ADAR1 protein expression is higher in aggressive BC cells (MDA-MB-231). Moreover, we identify a novel interacting partners proteins list with ADAR1 in MDA-MB-231, using immunoprecipitation assay and mass spectrometry. Using iLoop, a protein–protein interaction prediction server based on structural features, five proteins with high iloop scores were discovered: Histone H2A.V, Kynureninase (KYNU), 40S ribosomal protein SA, Complement C4-A, and Nebulin (ranged between 0.6 and 0.8). In silico analysis showed that invasive ductal carcinomas had the highest level of KYNU gene expression than the other classifications (p < 0.0001). Moreover, KYNU mRNA expression was shown to be considerably higher in TNBC patients (p < 0.0001) and associated with poor patient outcomes with a high-risk value. Importantly, we found an interaction between ADAR1 and KYNU in the more aggressive BC cells. Altogether, these results propose a new ADAR-KYNU interaction as potential therapeutic targeted therapy in aggressive BC
    corecore