5 research outputs found

    Discovery Potent of Thiazolidinedione Derivatives as Antioxidant, α-Amylase Inhibitor, and Antidiabetic Agent

    No full text
    This work aimed to synthesize safe antihyperglycemic derivatives bearing thiazolidinedione fragment based on spectral data. The DFT theory discussed the frontier molecular orbitals (FMOs), chemical reactivity of compounds, and molecular electrostatic potential (MEP) to explain interaction between thiazolidinediones and the biological receptor. α-amylase is known as the initiator-hydrolysis of the of polysaccharides; therefore, developing α-amylase inhibitors can open the way for a potential diabetes mellitus drug. The molecular docking simulation was performed into the active site of PPAR-γ and α-amylase. We evaluated in vitro α-amylase’s potency and radical scavenging ability. The compound 6 has the highest potency against α-amylase and radical scavenging compared to the reference drug and other members. They have been applied against anti-diabetic and anti-hyperlipidemic activity (in vivo) based on an alloxan-induced diabetic rat model during a 30-day treatment protocol. The most potent anti hyperglycemic members are 6 and 11 with reduction percentage of blood glucose level by 69.55% and 66.95%, respectively; compared with the normal control. Other members exhibited moderate to low anti-diabetic potency. All compounds showed a normal value against the tested biochemical parameters (CH, LDL, and HDL). The ADMET profile showed good oral bioavailability without any observed carcinogenesis effect

    Experimental and Theoretical Investigations of <i>Argania spinosa</i>’s Extracts on the Antioxidant Activity and Mild Steel Corrosion’s Inhibition in 1 M HCl

    No full text
    The aim of the present research is the evaluation of the extraction process effect on the chemical composition, the antioxidant activities, and the mild steel corrosion inhibition ability of Argania spinosa’s extracts (alimentary oil (AO) and hexanic extract of roasted almonds (HERA)). The chemical composition revealed that both extracts have the same major compounds: Palmitic, linoleic, and stearic acids, with their order slightly different. Electrochemical impedance spectroscopy (EIS), weight loss measurements, and polarization curves were used to estimate AO and HERA’s mild steel corrosion’s inhibition capacity. Based on these three methods, AO registered, respectively, 81%, 87%, and 87% inhibition efficiency while HERA registered 78%, 84%, and 82% inhibition efficiency. The antioxidant activity of AO and HERA was examined in parallel with standard antioxidants (gallic acid and quercetin) using two assays: DPPH* scavenging assay and ferric reducing antioxidant power assay (FRAP). AO had less EC50 in both techniques (DPPH*: 3559.08 ± 161.75 μg/mL; FRAP 1288.58 ± 169.21 μg/mL) than HERA (DPPH*: 3621.43 ± 316.05 μg/mL; FRAP 1655.86 ± 240.18 μg/mL). Quantum chemical and molecular dynamic studies were employed to suggest the adsorption mechanism

    Experimental and Theoretical Investigations of Argania spinosa&rsquo;s Extracts on the Antioxidant Activity and Mild Steel Corrosion&rsquo;s Inhibition in 1 M HCl

    No full text
    The aim of the present research is the evaluation of the extraction process effect on the chemical composition, the antioxidant activities, and the mild steel corrosion inhibition ability of Argania spinosa&rsquo;s extracts (alimentary oil (AO) and hexanic extract of roasted almonds (HERA)). The chemical composition revealed that both extracts have the same major compounds: Palmitic, linoleic, and stearic acids, with their order slightly different. Electrochemical impedance spectroscopy (EIS), weight loss measurements, and polarization curves were used to estimate AO and HERA&rsquo;s mild steel corrosion&rsquo;s inhibition capacity. Based on these three methods, AO registered, respectively, 81%, 87%, and 87% inhibition efficiency while HERA registered 78%, 84%, and 82% inhibition efficiency. The antioxidant activity of AO and HERA was examined in parallel with standard antioxidants (gallic acid and quercetin) using two assays: DPPH* scavenging assay and ferric reducing antioxidant power assay (FRAP). AO had less EC50 in both techniques (DPPH*: 3559.08 &plusmn; 161.75 &mu;g/mL; FRAP 1288.58 &plusmn; 169.21 &mu;g/mL) than HERA (DPPH*: 3621.43 &plusmn; 316.05 &mu;g/mL; FRAP 1655.86 &plusmn; 240.18 &mu;g/mL). Quantum chemical and molecular dynamic studies were employed to suggest the adsorption mechanism
    corecore