3 research outputs found

    Investigating the Permeability Evolution of Artificial Rock During Ductile and Brittle Deformation Under Pressurized Flow

    Full text link
    The drilling of geothermal energy, CO2 sequestration, and wastewater injection all involve the pressurized flow of fluids through porous rock, which can cause deformation and fracture of the material. Despite the widespread use of these industrial methods, there is a lack of experimental data on the connection between the pore pressure rise, the deformation and permeability changes in real rock. In order to address this gap in the literature, this study developed an artificial rock material that can be deformed and fractured at low pressures. By controlling the porosity, permeability, and strength of the material during the sintering process, it is possible to mimic various types of rock. The artificial rock was designed to accommodate radial flow and deformation, allowing for the tracking of deformation by monitoring the flux and driving pressure and thus calculating the permeability changes under various pressure conditions. The study was able to examine the impact of both ductile and brittle deformation on the permeability during pressurized flow, which were captured by two models that were adjusted to this scenario. This study provides a link between pressurized flow, rock formation permeability and ductile to brittle deformation, that can constrain risk assessment to geothermal energy and CO

    Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017

    Get PDF
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic

    MAPPING LOCAL PATTERNS OF CHILDHOOD OVERWEIGHT AND WASTING IN LOW- AND MIDDLE-INCOME COUNTRIES BETWEEN 2000 AND 2017

    Full text link
    A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
    corecore