136 research outputs found

    Vertical Structure of the Outer Accretion Disk in Persistent Low-Mass X-Ray Binaries

    Get PDF
    We have investigated the influence of X-ray irradiation on the vertical structure of the outer accretion disk in low-mass X-ray binaries by performing a self-consistent calculation of the vertical structure and X-ray radiation transfer in the disk. Penetrating deep into the disk, the field of scattered X-ray photons with energy E10E\gtrsim10\,keV exerts a significant influence on the vertical structure of the accretion disk at a distance R1010R\gtrsim10^{10}\,cm from the neutron star. At a distance R1011R\sim10^{11}\,cm, where the total surface density in the disk reaches Σ020\Sigma_0\sim20\,g\,cm2^{-2}, X-ray heating affects all layers of an optically thick disk. The X-ray heating effect is enhanced significantly in the presence of an extended atmospheric layer with a temperature Tatm(2÷3)×106T_{atm}\sim(2\div3)\times10^6\,K above the accretion disk. We have derived simple analytic formulas for the disk heating by scattered X-ray photons using an approximate solution of the transfer equation by the Sobolev method. This approximation has a 10\gtrsim10\,% accuracy in the range of X-ray photon energies E<20E<20\,keV.Comment: 19 pages, 8 figures, published in Astronomy Letter

    Disk precession and quasi-periodic brightness oscillations of V603 Aql in 2001-2002

    Get PDF
    We present the photometric observations of the old nova V603 Aql with the RTT 150 Russian-Turkish telescope during eleven nights of 2001-2002. We show that the star at this time was in a state with positive superhumps and its photometric period of 0.d1440.d145 was longer than the orbital period. We found night-to-night variations in the mean brightness of the system that are consistent with disk precession periods of 3.d3 and 3.d0 in 2001 and 2002, respectively. Analysis of the results and their comparison with the results of other authors using current theoretical models for disk precession lead us to suggest that the change in the disk precession period was caused by a change in the accretion rate in the system. V603 Aql in a state with negative superhumps was found to be brighter than it is in a state with positive superhumps by 0.m2-0.m3. We hypothesize that the transition between these states could also be caused by a change in the accretion rate. Quasi-periodic oscillations (QPOs) of the brightness with typical time scales of 9-70 min were detected on each observing night. These time scales were found to change from night to night. The detection of QPOs with a period of about 0.05 of the orbital period and its multiples on certain nights provides evidence for the model of QPO generation through accretion-rate modulation by ionization-front oscillations on the surface of the donor star near the inner Lagrangian point. © 2004 MAIK "Nauka/Interperiodica"

    Technical Design Report for the PANDA Solenoid and Dipole Spectrometer Magnets

    Full text link
    This document is the Technical Design Report covering the two large spectrometer magnets of the PANDA detector set-up. It shows the conceptual design of the magnets and their anticipated performance. It precedes the tender and procurement of the magnets and, hence, is subject to possible modifications arising during this process.Comment: 10 pages, 14MB, accepted by FAIR STI in May 2009, editors: Inti Lehmann (chair), Andrea Bersani, Yuri Lobanov, Jost Luehning, Jerzy Smyrski, Technical Coordiantor: Lars Schmitt, Bernd Lewandowski (deputy), Spokespersons: Ulrich Wiedner, Paola Gianotti (deputy

    Feasibility studies of the time-like proton electromagnetic form factor measurements with PANDA at FAIR

    Full text link
    The possibility of measuring the proton electromagnetic form factors in the time-like region at FAIR with the \PANDA detector is discussed. Detailed simulations on signal efficiency for the annihilation of pˉ+p\bar p +p into a lepton pair as well as for the most important background channels have been performed. It is shown that precision measurements of the differential cross section of the reaction pˉ+pe++e\bar p +p \to e^++ e^- can be obtained in a wide angular and kinematical range. The individual determination of the moduli of the electric and magnetic proton form factors will be possible up to a value of momentum transfer squared of q214q^2\simeq 14 (GeV/c)2^2. The total pˉ+pe++e\bar p +p\to e^++e^- cross section will be measured up to q228q^2\simeq 28 (GeV/c)2^2. The results obtained from simulated events are compared to the existing data. Sensitivity to the two photons exchange mechanism is also investigated.Comment: 12 pages, 4 tables, 8 figures Revised, added details on simulations, 4 tables, 9 figure

    Feasibility studies of time-like proton electromagnetic form factors at PANDA at FAIR

    Get PDF
    Simulation results for future measurements of electromagnetic proton form factors at \PANDA (FAIR) within the PandaRoot software framework are reported. The statistical precision with which the proton form factors can be determined is estimated. The signal channel pˉpe+e\bar p p \to e^+ e^- is studied on the basis of two different but consistent procedures. The suppression of the main background channel, i.e.\textit{i.e.} pˉpπ+π\bar p p \to \pi^+ \pi^-, is studied. Furthermore, the background versus signal efficiency, statistical and systematical uncertainties on the extracted proton form factors are evaluated using two different procedures. The results are consistent with those of a previous simulation study using an older, simplified framework. However, a slightly better precision is achieved in the PandaRoot study in a large range of momentum transfer, assuming the nominal beam conditions and detector performance

    Grain Surface Models and Data for Astrochemistry

    Get PDF
    AbstractThe cross-disciplinary field of astrochemistry exists to understand the formation, destruction, and survival of molecules in astrophysical environments. Molecules in space are synthesized via a large variety of gas-phase reactions, and reactions on dust-grain surfaces, where the surface acts as a catalyst. A broad consensus has been reached in the astrochemistry community on how to suitably treat gas-phase processes in models, and also on how to present the necessary reaction data in databases; however, no such consensus has yet been reached for grain-surface processes. A team of ∼25 experts covering observational, laboratory and theoretical (astro)chemistry met in summer of 2014 at the Lorentz Center in Leiden with the aim to provide solutions for this problem and to review the current state-of-the-art of grain surface models, both in terms of technical implementation into models as well as the most up-to-date information available from experiments and chemical computations. This review builds on the results of this workshop and gives an outlook for future directions

    Electronic properties and phase transitions in low-dimensional semiconductors

    Full text link
    We present the first review of the current state of the literature on electronic properties and phase transitions in TlX and TlMX2 (M = Ga, In; X = Se, S, Te) compounds. These chalcogenides belong to a family of the low-dimensional semiconductors possessing chain or layered structure. They are of significant interest because of their highly anisotropic properties, semi- and photoconductivity, non-linear effects in their I-V characteristics (including a region of negative differential resistance), switching and memory effects, second harmonic optical generation, relaxor behavior and potential applications for optoelectronic devices. We review the crystal structure of TlX and TlMX2 compounds, their transport properties under ambient conditions, experimental and theoretical studies of the electronic structure, transport properties and semiconductor-metal phase transitions under high pressure, and sequences of temperature-induced structural phase transitions with intermediate incommensurate states. Electronic nature of the ferroelectric phase transitions in the above-mentioned compounds, as well as relaxor behavior, nanodomains and possible occurrence of quantum dots in doped and irradiated crystals is discussed.Comment: 70 pages, 38 figure

    X-ray reprocessing in accreting pulsar GX 301-2 observed with Insight-HXMT

    Get PDF
    We investigate the absorption and emission features in observations of GX 301-2 detected with Insight-HXMT/LE in 2017-2019. At different orbital phases, we found prominent Fe Kalpha, Kbeta and Ni Kalpha lines, as well as Compton shoulders and Fe K-shell absorption edges. These features are due to the X-ray reprocessing caused by the interaction between the radiation from the source and surrounding accretion material. According to the ratio of iron lines Kalpha and Kbeta, we infer the accretion material is in a low ionisation state. We find an orbital-dependent local absorption column density, which has a large value and strong variability around the periastron. We explain its variability as a result of inhomogeneities of the accretion environment and/or instabilities of accretion processes. In addition, the variable local column density is correlated with the equivalent width of the iron Kalpha lines throughout the orbit, which suggests that the accretion material near the neutron star is spherically distributed.Comment: 10 pages, 5 figures, 2 tables, accepted for publication in MNRA

    Physics Performance Report for PANDA: Strong Interaction Studies with Antiprotons

    Full text link
    To study fundamental questions of hadron and nuclear physics in interactions of antiprotons with nucleons and nuclei, the universal PANDA detector will be built. Gluonic excitations, the physics of strange and charm quarks and nucleon structure studies will be performed with unprecedented accuracy thereby allowing high-precision tests of the strong interaction. The proposed PANDA detector is a state-of-the art internal target detector at the HESR at FAIR allowing the detection and identification of neutral and charged particles generated within the relevant angular and energy range. This report presents a summary of the physics accessible at PANDA and what performance can be expected.Comment: 216 page
    corecore