228 research outputs found

    Generalized Boundaries from Multiple Image Interpretations

    Full text link
    Boundary detection is essential for a variety of computer vision tasks such as segmentation and recognition. In this paper we propose a unified formulation and a novel algorithm that are applicable to the detection of different types of boundaries, such as intensity edges, occlusion boundaries or object category specific boundaries. Our formulation leads to a simple method with state-of-the-art performance and significantly lower computational cost than existing methods. We evaluate our algorithm on different types of boundaries, from low-level boundaries extracted in natural images, to occlusion boundaries obtained using motion cues and RGB-D cameras, to boundaries from soft-segmentation. We also propose a novel method for figure/ground soft-segmentation that can be used in conjunction with our boundary detection method and improve its accuracy at almost no extra computational cost

    Labeling the Features Not the Samples: Efficient Video Classification with Minimal Supervision

    Full text link
    Feature selection is essential for effective visual recognition. We propose an efficient joint classifier learning and feature selection method that discovers sparse, compact representations of input features from a vast sea of candidates, with an almost unsupervised formulation. Our method requires only the following knowledge, which we call the \emph{feature sign}---whether or not a particular feature has on average stronger values over positive samples than over negatives. We show how this can be estimated using as few as a single labeled training sample per class. Then, using these feature signs, we extend an initial supervised learning problem into an (almost) unsupervised clustering formulation that can incorporate new data without requiring ground truth labels. Our method works both as a feature selection mechanism and as a fully competitive classifier. It has important properties, low computational cost and excellent accuracy, especially in difficult cases of very limited training data. We experiment on large-scale recognition in video and show superior speed and performance to established feature selection approaches such as AdaBoost, Lasso, greedy forward-backward selection, and powerful classifiers such as SVM.Comment: arXiv admin note: text overlap with arXiv:1411.771

    PCA-SIFT: A more distinctive representation for local image descriptors

    Get PDF
    Stable local feature detection and representation is a fundamental component of many image registration and object recognition algorithms. Mikolajczyk and Schmid [14] recently evaluated a variety of approaches and identified the SIFT [11] algorithm as being the most resistant to common image deformations. This paper examines (and improves upon) the local image descriptor used by SIFT. Like SIFT, our descriptors encode the salient aspects of the image gradient in the feature point's neighborhood; however, instead of using SIFT's smoothed weighted histograms, we apply Principal Components Analysis (PCA) to the normalized gradient patch. Our experiments demonstrate that the PCAbased local descriptors are more distinctive, more robust to image deformations, and more compact than the standard SIFT representation. We also present results showing that using these descriptors in an image retrieval application results in increased accuracy and faster matching

    PORNOGRAPHY DETECTION IN VIDEO USING CHARACTERISTIC MOTION PATTERNS

    Get PDF
    A mechanism for detecting pornographic content in a video based on an analysis of characteristic motions in the video. The motion-based mechanism is to appearance-based and audio-based approaches, and therefore can be employed in combination with such approaches, or by itself. In one implementation, the mechanism employs a first phase of unsupervised learning, and a second phase of supervised learning. In the first phase, characteristic motion patterns are discovered and clustering is performed. In one implementation, characteristic motion patterns are discovered by analyzing the relative displacements of large numbers of ordered trajectory pairs over time. In the second phase, a classifier is trained to associate the clusters identified in the first phase with pornographic content. A motion pattern descriptor (e.g., a feature vector, etc.) for a video (e.g., a newly-uploaded video, etc.) is obtained and is provided to the trained classifier to obtain a pornography score for the video
    • …
    corecore