11 research outputs found

    Original Article Morusin induces cell death through inactivating STAT3 signaling in prostate cancer cells

    Get PDF
    Abstract: STAT3 has been recognized as an efficacious drug target for prostate cancer because of its constitutive activation in this fatal disease. We recently identified the root bark of Morus alba Linn. as a potential STAT3 inhibitor among 33 phytomedicines traditionally used in Korea. Morusin, an active compound isolated from the root bark of Morus alba, has shown anti-oxidant and anti-inflammatory effects. In the present study, we examined whether morusin has a potential as an anti-cancer agent in prostate cancer. We found that morusin suppressed viability of prostate cancer cells, but little effect in normal human prostate epithelial cells. Morusin also reduced STAT3 activity by inhibiting its phosphorylation, nuclear accumulation, and DNA binding activity. In addition, morusin down-regulated expression of STAT3 target genes encoding Bcl-xL, Bcl-2, Survivin, c-Myc and Cyclin D1, which are involved in regulation of apoptosis and cell cycle. Furthermore, morusin induced apoptosis in human prostate cancer cells by reducing STAT3 activity. Taken together, these results suggest that morusin could be a potentially therapeutic agent for prostate cancer by reducing STAT3 activity and inducing apoptosis

    High open-circuit voltage of graphene-based photovoltaic cells modulated by layer-by-layer transfer

    Full text link
    Graphene has shown great application opportunities in future nanoelectronic devices because of its outstanding electronic properties. Moreover, its impressive optical properties have been attracting the interest of researchers, and, recently, the photovoltaic effects of a heterojunction structure embedded with few layer graphene (FLG) have been demonstrated. Here, we report the photovoltaic response of graphenesemiconductor junctions and the controlled open-circuit voltage (Voc) with varying numbers of graphene layers. After unavoidably adsorbed contaminants were removed from the FLGs by means of in situ annealing, prepared by layer-by-layer transfer of the chemically grown graphene layer, the work functions of FLGs showed a sequential increase as the graphene layers increase, despite random interlayer-stacking, resulting in the modulation of photovoltaic behaviors of FLGs/Si interfaces. The surface photovoltaic effects observed here show an electronic realignment in the depth direction in the FLG heterojunction systems, indicating future potential toward solar devices utilizing the excellent transparency and flexibility of FLG. Copyright (c) 2011 John Wiley & Sons, Ltd

    Selective catalytic burning of graphene by SiOx layer depletion

    Full text link
    We report catalytic decomposition of few-layer graphene on an Au/SiOx/Si surface wherein oxygen is supplied by dissociation of the native SiOx layer at a relatively low temperature of 400 degrees C. The detailed chemical evolution of the graphene covered SiOx/Si surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native SiOx layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a SiOx layer could realize a new way to micromanufacture high-quality electrical contact

    Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell

    Full text link
    Impressive optical properties of graphene have been attracting the interest of researchers, and, recently, the photovoltaic effects of a heterojunction structure embedded with few layer graphene (FLG) have been demonstrated. Here, we show the direct dependence of open-circuit voltage (V-oc) on numbers of graphene layers. After unavoidably adsorbed contaminants were removed from the FLGs, by means of in situ annealing, prepared by layer-by-layer transfer of the chemically grown graphene layer, the work functions of FLGs showed a sequential increase as the graphene layers increase, despite of random interlayer-stacking, resulting in the modulation of photovoltaic behaviors of FLGs/Si interfaces. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464319]N

    Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell

    Full text link
    Impressive optical properties of graphene have been attracting the interest of researchers, and, recently, the photovoltaic effects of a heterojunction structure embedded with few layer graphene (FLG) have been demonstrated. Here, we show the direct dependence of open-circuit voltage (V-oc) on numbers of graphene layers. After unavoidably adsorbed contaminants were removed from the FLGs, by means of in situ annealing, prepared by layer-by-layer transfer of the chemically grown graphene layer, the work functions of FLGs showed a sequential increase as the graphene layers increase, despite of random interlayer-stacking, resulting in the modulation of photovoltaic behaviors of FLGs/Si interfaces. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3464319

    Selective catalytic burning of graphene by SiO x

    Full text link
    We report catalytic decomposition of few-layer graphene on an Au/SiOx/Si surface wherein oxygen is supplied by dissociation of the native SiOx layer at a relatively low temperature of 400 degrees C. The detailed chemical evolution of the graphene covered SiOx/Si surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native SiOx layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a SiOx layer could realize a new way to micromanufacture high-quality electrical contact.N
    corecore