108 research outputs found

    The Egr transcription factor family: From signal transduction to kidney differentiation

    Get PDF
    Extracellular “signals” in the form of neurotransmitters, growth factors, hormones, and matrix are known to be key modulators of cellular phenotype. These agents lead to the generation of second messenger signals in the plasma membrane and cytosol. In turn, these biochemical events modulate the expression of a set of so-called immediate-early genes (IEG), whose induction does not require de novo protein synthesis. Several years ago, we and others identified several IEGs [reviewed in 1 and 2]. Of particular interest to our laboratory has been a subset of IEGs that encode transcription factors, since as such they might: (1) be the targets for second messenger events, and (2) activate or repress the transcription of critical genes required to effect a particular cellular phenotype. Thus, immediate-early transcription factors (IETF) should couple short-term responses in the form of second messenger events to long-term changes in gene expression instrumental in altering phenotype

    A refined understanding of immunosuppressives and cancer risk

    Get PDF

    Fluvoxamine: A review of its mechanism of action and its role in COVID-19

    Get PDF
    Fluvoxamine is a well-tolerated, widely available, inexpensive selective serotonin reuptake inhibitor that has been shown in a small, double-blind, placebo-controlled, randomized study to prevent clinical deterioration of patients with mild coronavirus disease 2019 (COVID-19). Fluvoxamine is also an agonist for the sigma-1 receptor, through which it controls inflammation. We review here a body of literature that shows important mechanisms of action of fluvoxamine and other SSRIs that could play a role in COVID-19 treatment. These effects include: reduction in platelet aggregation, decreased mast cell degranulation, interference with endolysosomal viral trafficking, regulation of inositol-requiring enzyme 1α-driven inflammation and increased melatonin levels, which collectively have a direct antiviral effect, regulate coagulopathy or mitigate cytokine storm, which are known hallmarks of severe COVID-19

    Readily available drugs and other interventions to potentially improve the efficacy of immune checkpoint blockade in cancer

    Get PDF
    To improve the efficacy of immune checkpoint inhibitors (ICIs) for cancer treatment, various strategies, including combination therapies with repurposed drugs, are being explored. Several readily available interventions with potential to enhance programmed death 1 (PD-1) blockade have been identified. However, these interventions often remain overlooked due to the lack of financial incentives for their development, making them financial orphans. This review summarizes current knowledge regarding off-label drugs, supplements, and other readily available interventions that could improve the efficacy of PD-1 blockade. The summary of each intervention includes the proposed mechanism of action for combination with checkpoint inhibitors and data from animal and human studies. Additionally, we include summaries of common interventions to be avoided by patients on PD-1 blockade. Finally, we present approaches for conducting further studies in patients, with the aim of expediting the clinical development of these interventions. We strive to increase awareness of readily available combination therapies that may advance cancer immunotherapy and help patients today

    Nephrocan, a Novel Member of the Small Leucine-rich Repeat Protein Family, Is an Inhibitor of Transforming Growth Factor-β Signaling

    Get PDF
    In a search of new, small leucine-rich repeat proteoglycan/protein (SLRP) family members, a novel gene, nephrocan (NPN), has been identified. The gene consists of three exons, and based on the deduced amino acid sequence, NPN has 17 leucine-rich repeat motifs and unique cysteine-rich clusters both in the N and C termini, indicating that this gene belongs to a new class of SLRP family. NPN mRNA was predominantly expressed in kidney in adult mice, and during mouse embryogenesis, the expression was markedly increased in 11-day-old embryos at a time when early kidney development takes place. In the adult mouse kidney, NPN protein was located in distal tubules and collecting ducts. When NPN was overexpressed in cell culture, the protein was detected in the cultured medium, and upon treatment with N-glycosidase F, the molecular mass was lowered by approximately 14 kDa, indicating that NPN is a secreted N-glycosylated protein. Furthermore, transforming growth factor-beta (TGF-beta)-responsive 3TP promoter luciferase activity was down-regulated, and TGF-beta-induced Smad3 phosphorylation was also inhibited by NPN, suggesting that NPN suppresses TGF-beta/Smad signaling. Taken together, NPN is a novel member of the SLRP family that may play important roles in kidney development and pathophysiology by functioning as an endogenous inhibitor of TGF-beta signaling
    • …
    corecore