3 research outputs found

    Channel-Aware Pretraining of Joint Encoder-Decoder Self-Supervised Model for Telephonic-Speech ASR

    Full text link
    This paper proposes a novel technique to obtain better downstream ASR performance from a joint encoder-decoder self-supervised model when trained with speech pooled from two different channels (narrow and wide band). The joint encoder-decoder self-supervised model extends the HuBERT model with a Transformer decoder. HuBERT performs clustering of features and predicts the class of every input frame. In simple pooling, which is our baseline, there is no way to identify the channel information. To incorporate channel information, we have proposed non-overlapping cluster IDs for speech from different channels. Our method gives a relative improvement of ~4% over the joint encoder-decoder self-supervised model built with simple pooling of data, which serves as our baseline.Comment: 5 pages, 5 figure

    Technology Pipeline for Large Scale Cross-Lingual Dubbing of Lecture Videos into Multiple Indian Languages

    Full text link
    Cross-lingual dubbing of lecture videos requires the transcription of the original audio, correction and removal of disfluencies, domain term discovery, text-to-text translation into the target language, chunking of text using target language rhythm, text-to-speech synthesis followed by isochronous lipsyncing to the original video. This task becomes challenging when the source and target languages belong to different language families, resulting in differences in generated audio duration. This is further compounded by the original speaker's rhythm, especially for extempore speech. This paper describes the challenges in regenerating English lecture videos in Indian languages semi-automatically. A prototype is developed for dubbing lectures into 9 Indian languages. A mean-opinion-score (MOS) is obtained for two languages, Hindi and Tamil, on two different courses. The output video is compared with the original video in terms of MOS (1-5) and lip synchronisation with scores of 4.09 and 3.74, respectively. The human effort also reduces by 75%

    Domain Adaptation of low-resource Target-Domain models using well-trained ASR Conformer Models

    Full text link
    In this paper, we investigate domain adaptation for low-resource Automatic Speech Recognition (ASR) of target-domain data, when a well-trained ASR model trained with a large dataset is available. We argue that in the encoder-decoder framework, the decoder of the well-trained ASR model is largely tuned towards the source-domain, hurting the performance of target-domain models in vanilla transfer-learning. On the other hand, the encoder layers of the well-trained ASR model mostly capture the acoustic characteristics. We, therefore, propose to use the embeddings tapped from these encoder layers as features for a downstream Conformer target-domain model and show that they provide significant improvements. We do ablation studies on which encoder layer is optimal to tap the embeddings, as well as the effect of freezing or updating the well-trained ASR model's encoder layers. We further show that applying Spectral Augmentation (SpecAug) on the proposed features (this is in addition to default SpecAug on input spectral features) provides a further improvement on the target-domain performance. For the LibriSpeech-100-clean data as target-domain and SPGI-5000 as a well-trained model, we get 30% relative improvement over baseline. Similarly, with WSJ data as target-domain and LibriSpeech-960 as a well-trained model, we get 50% relative improvement over baseline.Comment: 5 pages,2 figure
    corecore