1,882 research outputs found

    Local Hall effect in hybrid ferromagnetic/semiconductor devices

    Full text link
    We have investigated the magnetoresistance of ferromagnet-semiconductor devices in an InAs two-dimensional electron gas system in which the magnetic field has a sinusoidal profile. The magnetoresistance of our device is large. The longitudinal resistance has an additional contribution which is odd in applied magnetic field. It becomes even negative at low temperature where the transport is ballistic. Based on the numerical analysis, we confirmed that our data can be explained in terms of the local Hall effect due to the profile of negative and positive field regions. This device may be useful for future spintronic applications.Comment: 4 pages with 4 fugures. Accepted for publication in Applied Physics Letter

    Thermopower of Aharonov-Bohm Interferometer with a Quantum Dot

    Full text link
    We report on the thermopower of an Aharonov-Bohm interferometer (AB) with a quantum dot in the Kondo limit. The thermopower is anomalously enhanced due to the Kondo effect as in heavy fermion systems. In contrast to the bulk systems, the sign of the thermopower can be changed by adjusting the energy level scheme or the particle-hole asymmetry of a dot with the gate voltage. Further the magnitude and even the sign of the thermopower in the AB ring can be changed at will with varying either magnetic fields or the gate voltages.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Thermoelectric effects of an Aharonov-Bohm interferometer with an embedded quantum dot in the Kondo regime

    Full text link
    Thermoelectric effects are studied in an Aharonov-Bohm (AB) interferometer with an embedded quantum dot in the Kondo regime. The AB flux-dependent transmission probability has an asymmetrical shape arising from the Fano interference between the direct tunneling path and the Kondo-resonant tunneling path through a quantum dot. The sign and magnitude of thermopower can be modulated by the AB flux and the direct tunneling amplitude. In addition, the thermopower is anomalously enhanced by the Kondo correlation in the quantum dot near the Kondo temperature (TKT_K). The Kondo correlation in the quantum dot also leads to crossover behavior in diagonal transport coefficients as a function of temperature. The amplitude of an AB oscillation in electric and thermal conductances is small at temperatures far above TKT_K, but becomes enhanced as the system is cooled below TKT_K. The AB oscillation is strong in the thermopower and Lorenz number within the crossover region near the Kondo temperature.Comment: 16 pages, 10 figure

    Scaling analysis of a model Hamiltonian for Ce3+^{3+} impurity in a cubic metal

    Full text link
    We introduce various exchange interactions in a model Hamiltonian for Ce3+^{3+} ions in cubic symmetry with three configurations (f0f^0,f1f^1,f2f^2). With the impurity pseudo spin SI=1/2S_I=1/2, our Hamiltonian includes: (i) One-channel Sc=1/2S_c=1/2 Anderson model; (ii) Two-channel Sc=1/2S_c=1/2 Anderson model; (iii) An unforseen one-channel Sc=3/2S_c=3/2 Anderson model with a non-trivial fixed point; (iv) Mixing exchange interaction between the Γ6,7\Gamma_{6,7} and the Γ8\Gamma_8 conduction electron partial wave states; (v) Multiple conduction electron partial wave states. Using the third-order scaling (perturbative renormalization group) analysis, we study stability of various fixed points relevant to various exchange interactions for Ce3+^{3+} ions in cubic symmetry.Comment: 68 pages. 4 figures are available upon request from [email protected] (revised

    Structural and Biochemical Bases for the Inhibition of Autophagy and Apoptosis by Viral BCL-2 of Murine γ-Herpesvirus 68

    Get PDF
    All gammaherpesviruses express homologues of antiapoptotic B-cell lymphoma-2 (BCL-2) to counter the clearance of infected cells by host antiviral defense machineries. To gain insights into the action mechanisms of these viral BCL-2 proteins, we carried out structural and biochemical analyses on the interactions of M11, a viral BCL-2 of murine γ-herpesvirus 68, with a fragment of proautophagic Beclin1 and BCL-2 homology 3 (BH3) domain-containing peptides derived from an array of proapoptotic BCL-2 family proteins. Mainly through hydrophobic interactions, M11 bound the BH3-like domain of Beclin1 with a dissociation constant of 40 nanomole, a markedly tighter affinity compared to the 1.7 micromolar binding affinity between cellular BCL-2 and Beclin1. Consistently, M11 inhibited autophagy more efficiently than BCL-2 in NIH3T3 cells. M11 also interacted tightly with a BH3 domain peptide of BAK and those of the upstream BH3-only proteins BIM, BID, BMF, PUMA, and Noxa, but weakly with that of BAX. These results collectively suggest that M11 potently inhibits Beclin1 in addition to broadly neutralizing the proapoptotic BCL-2 family in a similar but distinctive way from cellular BCL-2, and that the Beclin1-mediated autophagy may be a main target of the virus

    Increased rod stiffness improves the degree of deformity correction by segmental pedicle screw fixation in adolescent idiopathic scoliosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are limited reports in literature studying the impact of rod diameter and stiffness on the degree of deformity correction in patients with AIS.</p> <p>Aims</p> <p>The aims of this study were to evaluate the 3-dimentional deformity correction achieved by segmental pedicle screw fixation in patients with adolescent idiopathic scoliosis, and to find out if learning or the change to stiffer rods had any positive impact on deformity correction.</p> <p>Study design</p> <p>Retrospective study.</p> <p>Methods</p> <p>Plain radiographs and low-dose spine CTs of 116 consecutive patients (aged 15.9 ± 2.8 years) operated during the period 2005-2009 (group 1: patients operated autumn 2005-2006; group 2: 2007; group 3: 2008; group 4: 2009) were retrospectively evaluated.</p> <p>Results</p> <p>There was no statistically significant difference between the correction of the Cobb angle (P = 0.425) or lower end vertebra tilt (P = 0.298) in patients operated during the first versus the remaining periods of the study. No restoration of the sagittal kyphosis was reported in the first period compared with 5.9° in the last study period (P < 0.001). The correction of vertebral rotation was also improved from 4.2° to 7.8° (P < 0.001) for the same periods. For the whole study population, there was statistically significant correlation between the order of the operation (patient number) and the restoration of sagittal kyphosis (r = -0.344, P = 0.001), and the correction of vertebral rotation (r = 0.370, P < 0.001), but not for the Cobb angle or LEVT. However, there was no significant difference in restoration of sagittal kyphosis and the vertebral rotation in the first 17 patients compared with the last 17 patients operated with rods of 5.5 mm diameter (P = 0.621, and 0.941, respectively), indicating that rod stiffness had more impact on the deformity correction than did learning.</p> <p>Conclusions</p> <p>This study showed that rod stiffness had more impact on the deformity correction than did learning.</p

    Mesoscopic Fano Effect in a Quantum Dot Embedded in an Aharonov-Bohm Ring

    Full text link
    The Fano effect, which occurs through the quantum-mechanical cooperation between resonance and interference, can be observed in electron transport through a hybrid system of a quantum dot and an Aharonov-Bohm ring. While a clear correlation appears between the height of the Coulomb peak and the real asymmetric parameter qq for the corresponding Fano lineshape, we need to introduce a complex qq to describe the variation of the lineshape by the magnetic and electrostatic fields. The present analysis demonstrates that the Fano effect with complex asymmetric parameters provides a good probe to detect a quantum-mechanical phase of traversing electrons.Comment: REVTEX, 9 pages including 8 figure

    Suppression of current in transport through parallel double quantum dots

    Full text link
    We report our study of the I-V curves in the transport through the quantum dot when an additional quantum dot lying in the Kondo regime is side-connected to it. Due to the Kondo scattering off the effective spin on a side-connected quantum dot the conductance is suppressed at low temperatures and at low source-drain bias voltages. This zero-bias anomaly is understood as enhanced Kondo scattering with decreasing temperature.Comment: 14 pages, 8 figure
    corecore