115 research outputs found
Evolution of ribosomal DNA-derived satellite repeat in tomato genome
<p>Abstract</p> <p>Background</p> <p>Tandemly repeated DNA, also called as satellite DNA, is a common feature of eukaryotic genomes. Satellite repeats can expand and contract dramatically, which may cause genome size variation among genetically-related species. However, the origin and expansion mechanism are not clear yet and needed to be elucidated.</p> <p>Results</p> <p>FISH analysis revealed that the satellite repeat showing homology with intergenic spacer (IGS) of rDNA present in the tomato genome. By comparing the sequences representing distinct stages in the divergence of rDNA repeat with those of canonical rDNA arrays, the molecular mechanism of the evolution of satellite repeat is described. Comprehensive sequence analysis and phylogenetic analysis demonstrated that a long terminal repeat retrotransposon was interrupted into each copy of the 18S rDNA and polymerized by recombination rather than transposition via an RNA intermediate. The repeat was expanded through doubling the number of IGS into the 25S rRNA gene, and also greatly increasing the copy number of type I subrepeat in the IGS of 25-18S rDNA by segmental duplication. Homogenization to a single type of subrepeat in the satellite repeat was achieved as the result of amplifying copy number of the type I subrepeat but eliminating neighboring sequences including the type II subrepeat and rRNA coding sequence from the array. FISH analysis revealed that the satellite repeats are commonly present in closely-related <it>Solanum </it>species, but vary in their distribution and abundance among species.</p> <p>Conclusion</p> <p>These results represent that the dynamic satellite repeats were originated from intergenic spacer of rDNA unit in the tomato genome. This result could serve as an example towards understanding the initiation and the expansion of the satellite repeats in complex eukaryotic genome.</p
Development of an Animal Experimental Model for a Bileaflet Mechanical Heart Valve Prosthesis
The objective of this study was to develop a pre-clinical large animal model for the in vivo hemodynamic testing of prosthetic valves in the aortic position without the need for cardiopulmonary bypass. Ten male pigs were used. A composite valved conduit was constructed in the operating room by implanting a prosthetic valve between two separate pieces of vascular conduits, which bypassed the ascending aorta to the descending aorta. Prior to applying a side-biting clamp to the ascending aorta for proximal grafting to the aortic anastomosis, an aorta to femoral artery shunt was placed just proximally to this clamp. The heart rate, cardiac output, Vmax, transvalvular pressure gradient, effective orifice area and incremental dobutamine stress response were assessed. A dose dependant increase with dobutamine was seen in terms of cardiac output, Vmax, and the peak transvalvular pressure gradient both in the native and in the prosthetic valve. However, the increment was much steeper in the prosthetic valve. No significant differences in cardiac output were noted between the native and the prosthetic valves. The described pre-clinical porcine model was found suitable for site-specific in-vivo hemodynamic assessment of aortic valvular prosthesis without cardiopulmonary bypass
Predictive value of progression-related gene classifier in primary non-muscle invasive bladder cancer
<p>Abstract</p> <p>Background</p> <p>While several molecular markers of bladder cancer prognosis have been identified, the limited value of current prognostic markers has created the need for new molecular indicators of bladder cancer outcomes. The aim of this study was to identify genetic signatures associated with disease prognosis in bladder cancer.</p> <p>Results</p> <p>We used 272 primary bladder cancer specimens for microarray analysis and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analysis. Microarray gene expression analysis of randomly selected 165 primary bladder cancer specimens as an original cohort was carried out. Risk scores were applied to stratify prognosis-related gene classifiers. Prognosis-related gene classifiers were individually analyzed with tumor invasiveness (non-muscle invasive bladder cancer [NMIBC] and muscle invasive bladder cancer [MIBC]) and prognosis. We validated selected gene classifiers using RT-PCR in the original (165) and independent (107) cohorts. Ninety-seven genes related to disease progression among NMIBC patients were identified by microarray data analysis. Eight genes, a progression-related gene classifier in NMIBC, were selected for RT-PCR. The progression-related gene classifier in patients with NMIBC was closely correlated with progression in both original and independent cohorts. Furthermore, no patient with NMIBC in the good-prognosis signature group experienced cancer progression.</p> <p>Conclusions</p> <p>We identified progression-related gene classifier that has strong predictive value for determining disease outcome in NMIBC. This gene classifier could assist in selecting NMIBC patients who might benefit from more aggressive therapeutic intervention or surveillance.</p
Low-temperature formation of epitaxial graphene on 6H-SiC induced by continuous electron beam irradiation
It is observed that epitaxial graphene forms on the surface of a 6H-SiC substrate by irradiating electron beam directly on the sample surface in high vacuum at relatively low temperature (similar to 670 degrees C). The symmetric shape and full width at half maximum of 2D peak in the Raman spectra indicate that the formed epitaxial graphene is turbostratic. The gradual change of the Raman spectra with electron beam irradiation time increasing suggests that randomly distributed small grains of epitaxial graphene form first and grow laterally to cover the entire irradiated area. The sheet resistance of epitaxial graphene film is measured to be similar to 6.7 k Omega/sq.open4
Lactobacillus plantarum DK119 as a Probiotic Confers Protection against Influenza Virus by Modulating Innate Immunity
Lactobacillus plantarum DK119 (DK119) isolated from the fermented Korean cabbage food was used as a probiotic to determine its antiviral effects on influenza virus. DK119 intranasal or oral administration conferred 100% protection against subsequent lethal infection with influenza A viruses, prevented significant weight loss, and lowered lung viral loads in a mouse model. The antiviral protective efficacy was observed in a dose and route dependent manner of DK119 administration. Mice that were treated with DK119 showed high levels of cytokines IL-12 and IFN-c in bronchoalveolar lavage fluids, and a low degree of inflammation upon infection with influenza virus. Depletion of alveolar macrophage cells in lungs and bronchoalveolar lavages completely abrogated the DK119-mediated protection. Modulating host innate immunity of dendritic and macrophage cells, and cytokine production pattern appeared to be possible mechanisms by which DK119 exhibited antiviral effects on influenza virus infection. These results indicate that DK119 can be developed as a beneficial antiviral probiotic microorganism
Safety and Efficacy of Second-Generation Everolimus-Eluting Xience V Stents Versus Zotarolimus-Eluting Resolute Stents in Real-World Practice Patient-Related and Stent-Related Outcomes From the Multicenter Prospective EXCELLENT and RESOLUTE-Korea Registries
ObjectivesThis study sought to compare the safety and efficacy of the Xience V/Promus everolimus-eluting stent (EES) (Abbott Vascular, Temecula, California) with the Endeavor Resolute zotarolimus-eluting stent (ZES-R) (Medtronic Cardiovascular, Santa Rosa, California) in “all-comer” cohorts.BackgroundOnly 2 randomized controlled trials have compared these stents.MethodsThe EXCELLENT (Efficacy of Xience/Promus Versus Cypher to Reduce Late Loss After Stenting) and RESOLUTE-Korea registries prospectively enrolled 3,056 patients treated with the EES and 1,998 patients treated with the ZES-R, respectively, without exclusions. Stent-related composite outcomes (target lesion failure [TLF]) and patient-related composite outcomes were compared in crude and propensity score-matched analyses.ResultsOf 5,054 patients, 3,830 (75.8%) had off-label indication (2,217 treated with EES and 1,613 treated with ZES-R). The stent-related outcome (82 [2.7%] vs. 58 [2.9%], p = 0.662) and the patient-related outcome (225 [7.4%] vs. 153 [7.7%], p = 0.702) did not differ between EES and ZES-R, respectively, at 1 year, which was corroborated by similar results from the propensity score-matched cohort. The rate of definite or probable stent thrombosis (18 [0.6%] vs. 7 [0.4%], p = 0.306) also was similar. In multivariate analysis, off-label indication was the strongest predictor of TLF (adjusted hazard ratio: 2.882; 95% confidence interval: 1.226 to 6.779; p = 0.015).ConclusionsIn this robust real-world registry with unrestricted use of EES and ZES-R, both stents showed comparable safety and efficacy at 1-year follow-up. Overall incidences of TLF and definite stent thrombosis were low, even in the patients with off-label indication, suggesting excellent safety and efficacy of both types of second-generation drug-eluting stents
Regulation of proliferation and invasion by the IGF signalling pathway in Epstein-Barr virus-positive gastric cancer
Several carcinomas including gastric cancer have been reported to contain Epstein-Barr virus (EBV) infection. EBV-associated gastric cancer (EBVaGC) is classified as one of four molecular subtypes of gastric cancer by The Cancer Genome Atlas (TCGA) group with increased immune-related signatures. Identification of EBV-dependent pathways with significant biological roles is needed for EBVaGC. To compare the biological changes between AGS gastric epithelial cells and EBV-infected AGS (AGS-EBV) cells, proliferation assay, CCK-8 assay, invasion assay, cell cycle analysis, RT-PCR, Western blot and ELISA were performed. BI836845, a humanized insulin-like growth factor (IGF) ligand-neutralizing antibody, was used for IGF-related signalling pathway inhibition. AGS-EBV cells showed slower proliferating rate and higher sensitivity to BI836845 compared to AGS cells. Moreover, invasiveness of AGS-EBV was increased than that of AGS, and BI836845 treatment significantly decreased the invasiveness of AGS-EBV. Although no apoptosis was detected, entry into the S phase of the cell cycle was delayed in BI836845-treated AGS-EBV cells. In conclusion, AGS-EBV cells seem to modulate their proliferation and invasion through the IGF signalling pathway. Inhibition of the IGF signalling pathway therefore could be a potential therapeutic strategy for EBVaGC
- …