8 research outputs found

    Hapi: A Robust Pseudo-3D Calibration-Free WiFi-based Indoor Localization System

    Full text link
    In this paper, we present Hapi, a novel system that uses off-the-shelf standard WiFi to provide pseudo-3D indoor localization. It estimates the user's floor and her 2D location on that floor. Hapi is calibration-free, only requiring the building's floorplans and its WiFi APs' installation location for deployment. Our analysis shows that while a user can hear APs from nearby floors as well as her floor, she will typically only receive signals from spatially closer APs in distant floors, as compared to APs in her floor. This is due to signal attenuation by floors/ceilings along with the 3D distance between the APs and the user. Hapi leverages this observation to achieve accurate and robust location estimates. A deep-learning based method is proposed to identify the user's floor. Then, the identified floor along with the user's visible APs from all floors are used to estimate her 2D location through a novel RSS-Rank Gaussian-based method. Additionally, we present a regression based method to predict Hapi's location estimates' quality and employ it within a Kalman Filter to further refine the accuracy. Our evaluation results, from deployment on various android devices over 6 months with 13 subjects in 5 different up to 9 floors multistory buildings, show that Hapi can identify the user's exact floor up to 95.2% of the time and her 2D location with a median accuracy of 3.5m, achieving 52.1% and 76.0% improvement over related calibration-free state-of-the-art systems respectively.Comment: Accepted for publication in MobiQuitous 2018 - the 15th International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Service

    Tilejunction: Mitigating Signal Noise for Fingerprint-Based Indoor Localization

    No full text

    Indoor Localization and Automatic Fingerprint Update with Altered AP Signals

    No full text

    Maxlifd: Joint Maximum Likelihood Localization Fusing Fingerprints and Mutual Distances

    No full text

    Design of Matching Imaging on Agile Satellite with Wide-Swath Whiskbroom Payloads along the Coastal Zone

    No full text
    The non-linearly curved coastal zone is very long and wide. The traditional satellite can’t cover the whole coastal zone in a single scan. So, the method of matching imaging combining the adjustment of satellite attitude and the scanning of the swing mirror are proposed. Firstly, based on the position of feature points of the coastal zone, the attitude when the optical axis of the satellite always points to the feature points is calculated. According to the width of the sea and land on both sides of the coastline, the parameters of the swing mirror of wide-swath whiskbroom payloads are analyzed. Secondly, the velocity vector model considering time-varying satellite attitude and the dynamic scanning of the swing mirror is constructed. The schemes of matching imaging such as adjustments of yaw angle and detector are developed. Finally, the precise experiment is designed to verify the correctness of the matching imaging. The experimental results show that the resolution of the matching imaging is less than 1 pixel and its modulation transfer function (MTF) is greater than the human eye’s minimum MTF of 0.026. The method of matching imaging using the adjustment of satellite attitude and the scanning of the swing mirror can realize wide imaging along the coastline and improve the temporal resolution at the same time

    Design of Matching Imaging on Agile Satellite with Wide-Swath Whiskbroom Payloads along the Coastal Zone

    No full text
    The non-linearly curved coastal zone is very long and wide. The traditional satellite can’t cover the whole coastal zone in a single scan. So, the method of matching imaging combining the adjustment of satellite attitude and the scanning of the swing mirror are proposed. Firstly, based on the position of feature points of the coastal zone, the attitude when the optical axis of the satellite always points to the feature points is calculated. According to the width of the sea and land on both sides of the coastline, the parameters of the swing mirror of wide-swath whiskbroom payloads are analyzed. Secondly, the velocity vector model considering time-varying satellite attitude and the dynamic scanning of the swing mirror is constructed. The schemes of matching imaging such as adjustments of yaw angle and detector are developed. Finally, the precise experiment is designed to verify the correctness of the matching imaging. The experimental results show that the resolution of the matching imaging is less than 1 pixel and its modulation transfer function (MTF) is greater than the human eye’s minimum MTF of 0.026. The method of matching imaging using the adjustment of satellite attitude and the scanning of the swing mirror can realize wide imaging along the coastline and improve the temporal resolution at the same time

    Efficient Locality Classification for Indoor Fingerprint-Based Systems

    No full text
    corecore