595 research outputs found
Triangulations of and Tropical Oriented Matroids
Develin and Sturmfels showed that regular triangulations of can be thought as tropical polytopes. Tropical oriented
matroids were defined by Ardila and Develin, and were conjectured to be in
bijection with all subdivisions of . In this
paper, we show that any triangulation of
encodes a tropical oriented matroid. We also suggest a new class of
combinatorial objects that may describe all subdivisions of a bigger class of
polytopes.Comment: 11 pages and 3 figures. Any comment or feedback would be welcomed v2.
Our result is that triangulations of product of simplices is a tropical
oriented matroid. We are trying to extend this to all subdivisions. v3
Replaces the proof of Lemma 2.6 with a reference.. Proof of the matrix being
totally unimodular is now more detailed. Extended abstract will be submitted
to FPSAC '1
Bruhat order, smooth Schubert varieties, and hyperplane arrangements
The aim of this article is to link Schubert varieties in the flag manifold
with hyperplane arrangements. For a permutation, we construct a certain
graphical hyperplane arrangement. We show that the generating function for
regions of this arrangement coincides with the Poincare polynomial of the
corresponding Schubert variety if and only if the Schubert variety is smooth.
We give an explicit combinatorial formula for the Poincare polynomial. Our main
technical tools are chordal graphs and perfect elimination orderings.Comment: 14 pages, 2 figure
Matching Ensembles (Extended Abstract)
International audienceWe introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices.Nous introduisons un système d’axiomes pour une collection de couplages qui décrit la triangulation de produit de simplexes
Rainbow Graphs and Switching Classes
A rainbow graph is a graph that admits a vertex-coloring such that every
color appears exactly once in the neighborhood of each vertex. We investigate
some properties of rainbow graphs. In particular, we show that there is a
bijection between the isomorphism classes of n-rainbow graphs on 2n vertices
and the switching classes of graphs on n vertices.Comment: Added more reference, fixed some typos (revision for journal
submission
Matching Ensembles (Extended Abstract)
We introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices
Matching Ensembles (Extended Abstract)
We introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices.Nous introduisons un système d’axiomes pour une collection de couplages qui décrit la triangulation de produit de simplexes
Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements
We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is rationally smooth.Nous relions des variétés de Schubert dans le variété flag généralisée avec des arrangements des hyperplans. Pour un élément dún groupe de Weyl, nous construisons un certain arrangement graphique des hyperplans. Nous montrons que la fonction génératrice pour les régions de cet arrangement coincide avec le polynome de Poincaré de la variété de Schubert correspondante si et seulement si la variété de Schubert est rationnellement lisse
Triangulations of and Tropical Oriented Matroids
Develin and Sturmfels showed that regular triangulations of can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of . In this paper, we show that any triangulation of encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes.Develin et Sturmfels ont montré que les triangulations de peuvent être considérées comme des polytopes tropicaux. Les matroïdes orientés tropicaux ont été définis par Ardila et Develin, et ils ont été conjecturés être en bijection avec les subdivisions de . Dans cet article, nous montrons que toute triangulation de encode un matroïde orienté tropical. De plus, nous proposons une nouvelle classe d'objets combinatoires qui peuvent décrire toutes les subdivisions d'une plus grande classe de polytopes
- …