595 research outputs found

    Triangulations of Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1} and Tropical Oriented Matroids

    Full text link
    Develin and Sturmfels showed that regular triangulations of Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1} can be thought as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1}. In this paper, we show that any triangulation of Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1} encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes.Comment: 11 pages and 3 figures. Any comment or feedback would be welcomed v2. Our result is that triangulations of product of simplices is a tropical oriented matroid. We are trying to extend this to all subdivisions. v3 Replaces the proof of Lemma 2.6 with a reference.. Proof of the matrix being totally unimodular is now more detailed. Extended abstract will be submitted to FPSAC '1

    Bruhat order, smooth Schubert varieties, and hyperplane arrangements

    Get PDF
    The aim of this article is to link Schubert varieties in the flag manifold with hyperplane arrangements. For a permutation, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincare polynomial of the corresponding Schubert variety if and only if the Schubert variety is smooth. We give an explicit combinatorial formula for the Poincare polynomial. Our main technical tools are chordal graphs and perfect elimination orderings.Comment: 14 pages, 2 figure

    Matching Ensembles (Extended Abstract)

    Get PDF
    International audienceWe introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices.Nous introduisons un système d’axiomes pour une collection de couplages qui décrit la triangulation de produit de simplexes

    Rainbow Graphs and Switching Classes

    Full text link
    A rainbow graph is a graph that admits a vertex-coloring such that every color appears exactly once in the neighborhood of each vertex. We investigate some properties of rainbow graphs. In particular, we show that there is a bijection between the isomorphism classes of n-rainbow graphs on 2n vertices and the switching classes of graphs on n vertices.Comment: Added more reference, fixed some typos (revision for journal submission

    Matching Ensembles (Extended Abstract)

    Get PDF
    We introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices

    Matching Ensembles (Extended Abstract)

    No full text
    We introduce an axiom system for a collection of matchings that describes the triangulation of product of simplices.Nous introduisons un système d’axiomes pour une collection de couplages qui décrit la triangulation de produit de simplexes

    Bruhat order, rationally smooth Schubert varieties, and hyperplane arrangements

    No full text
    We link Schubert varieties in the generalized flag manifolds with hyperplane arrangements. For an element of a Weyl group, we construct a certain graphical hyperplane arrangement. We show that the generating function for regions of this arrangement coincides with the Poincaré polynomial of the corresponding Schubert variety if and only if the Schubert variety is rationally smooth.Nous relions des variétés de Schubert dans le variété flag généralisée avec des arrangements des hyperplans. Pour un élément dún groupe de Weyl, nous construisons un certain arrangement graphique des hyperplans. Nous montrons que la fonction génératrice pour les régions de cet arrangement coincide avec le polynome de Poincaré de la variété de Schubert correspondante si et seulement si la variété de Schubert est rationnellement lisse

    Triangulations of Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1} and Tropical Oriented Matroids

    No full text
    Develin and Sturmfels showed that regular triangulations of Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1} can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1}. In this paper, we show that any triangulation of Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1} encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes.Develin et Sturmfels ont montré que les triangulations de Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1} peuvent être considérées comme des polytopes tropicaux. Les matroïdes orientés tropicaux ont été définis par Ardila et Develin, et ils ont été conjecturés être en bijection avec les subdivisions de Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1}. Dans cet article, nous montrons que toute triangulation de Δn−1×Δd−1\Delta_{n-1} \times \Delta_{d-1} encode un matroïde orienté tropical. De plus, nous proposons une nouvelle classe d'objets combinatoires qui peuvent décrire toutes les subdivisions d'une plus grande classe de polytopes
    • …
    corecore