12 research outputs found

    Performance Investigation of Transcritical Carbon Dioxide Refrigeration Cycle

    Get PDF
    AbstractCO2 has low critical pressure and temperature. This gives an opportunity CO2 cycles to work in a transcritical nature where heat rejection and absorption are done at supercritical and subcritical conditions, respectively. However, this characteristic posed some performance issues for CO2 refrigeration cycle such as the pressure and temperature of CO2 becomes independent of one another above the critical point thus specifying the operating conditions would be tough. It is also important to identify the optimum cooler pressure and control it; in order to get high cycle coefficient of performance (COP). Thus, the objective of this paper is to investigate the performance of a transcritical CO2 compression refrigeration cycle for different parameters and evaluate its COP. To achieve that, a refrigeration cycle was modeled using thermodynamic concepts. Then, the model was simulated for various parameters that were manipulated to investigate the cycle performance. Maintaining other operating parameters constant the highest COP was 3.24 at 10MPa gas cooler pressure. It was also observed that the cycle is suitable for air-condition application than refrigeration cycle, as COP increases when the evaporator temperature increases. Simulations were conducted using EXCEL developed program. The results can be used in the design of CO2 refrigeration cycle

    Natural Convection-Radiation from a Vertical Base-Fin Array with Emissivity Determination

    No full text
    Experiments have been conducted to determine the emissivity for black chrome coated and uncoated aluminum surfaces. The emissivity of the surfaces is estimated considering combined convection radiation heat transfer and observed to be a constant in the range of 60 to 110°C. The combined heat transfer coefficients from black chrome coated vertical base vertical fin array of size 70 x 70 mm consisting of 22 aluminum fins with a fin spacing of 10 mm by natural convection and radiation has been determined at different heat inputs. Theoretical analysis of single fin geometry of constant thickness considering both convection and radiation has been used to predict the temperature distribution and heat flow. The theoretical values of heat flow estimated for a fin array is in good agreement with the experimental observations validating the emissivity of the surface. The experimental data is further validated with the equations of Nusselt presented by Churchill and Chu

    Natural Convection-Radiation from a Vertical Base-Fin Array with Emissivity Determination

    No full text
    Experiments have been conducted to determine the emissivity for black chrome coated and uncoated aluminum surfaces. The emissivity of the surfaces is estimated considering combined convection radiation heat transfer and observed to be a constant in the range of 60 to 110°C. The combined heat transfer coefficients from black chrome coated vertical base vertical fin array of size 70 x 70 mm consisting of 22 aluminum fins with a fin spacing of 10 mm by natural convection and radiation has been determined at different heat inputs. Theoretical analysis of single fin geometry of constant thickness considering both convection and radiation has been used to predict the temperature distribution and heat flow. The theoretical values of heat flow estimated for a fin array is in good agreement with the experimental observations validating the emissivity of the surface. The experimental data is further validated with the equations of Nusselt presented by Churchill and Chu

    On the Influence of Collector Size on the Solar Chimneys Performance

    No full text
    Performance of solar chimney power plant system is highly influenced by the design geometries. The collector size is logically enhances the solar chimney performance, but the trend of enhancement is not yet investigated. In the present work, experimental and numerical investigations have been carried out to ascertain, in terms of qualitative and quantitative evaluation, the effect of the collector diameter. Daily thermal efficiency has been determined at four different collector diameter. Two different collector diameters, 3.0 and 6.0 m, have been investigated experimentally, and then scaled up, to 9.0 and 12.0 m, by numerical simulation using ANSYS-FLUENTÂź15 software. Results demonstrated that collector diameter has effectively influenced the system performance. Larger collector diameter imposed increase in the velocity, temperature and the daily average thermal efficiency of the system. From the experimental results, increasing the collector diameter from 3.0 to 6.0 m has increased the daily average thermal efficiency of the collector from 9.81 to 12.8. Simulation results at 800 W/m2 irradiation revealed that the velocity in the chimney have increased from 1.66 m/s at 3.0 m collector diameter to 2.34, 2.47 and 2.63 m/s for 6.0, 9.0 and 12.0 m collector diameters, respectively

    On the Influence of Collector Size on the Solar Chimneys Performance

    No full text
    Performance of solar chimney power plant system is highly influenced by the design geometries. The collector size is logically enhances the solar chimney performance, but the trend of enhancement is not yet investigated. In the present work, experimental and numerical investigations have been carried out to ascertain, in terms of qualitative and quantitative evaluation, the effect of the collector diameter. Daily thermal efficiency has been determined at four different collector diameter. Two different collector diameters, 3.0 and 6.0 m, have been investigated experimentally, and then scaled up, to 9.0 and 12.0 m, by numerical simulation using ANSYS-FLUENTÂź15 software. Results demonstrated that collector diameter has effectively influenced the system performance. Larger collector diameter imposed increase in the velocity, temperature and the daily average thermal efficiency of the system. From the experimental results, increasing the collector diameter from 3.0 to 6.0 m has increased the daily average thermal efficiency of the collector from 9.81 to 12.8. Simulation results at 800 W/m2 irradiation revealed that the velocity in the chimney have increased from 1.66 m/s at 3.0 m collector diameter to 2.34, 2.47 and 2.63 m/s for 6.0, 9.0 and 12.0 m collector diameters, respectively

    Public Awareness and Practices Towards Self-Medication with Antibiotics Among Malaysian Population: Questionnaire Development and Pilot Testing

    No full text
    Not Availabl

    Kratom: A systematic review of toxicological issues

    No full text

    Pancreatic surgery outcomes: multicentre prospective snapshot study in 67 countries

    No full text
    corecore