59 research outputs found
Second-order electronic correlation effects in a one-dimensional metal
The Pariser-Parr-Pople (PPP) model of a single-band one-dimensional (1D)
metal is studied at the Hartree-Fock level, and by using the second-order
perturbation theory of the electronic correlation. The PPP model provides an
extension of the Hubbard model by properly accounting for the long-range
character of the electron-electron repulsion. Both finite and infinite version
of the 1D-metal model are considered within the PPP and Hubbard approximations.
Calculated are the second-order electronic-correlation corrections to the total
energy, and to the electronic-energy bands. Our results for the PPP model of 1D
metal show qualitative similarity to the coupled-cluster results for the 3D
electron-gas model. The picture of the 1D-metal model that emerges from the
present study provides a support for the hypothesis that the normal metallic
state of the 1D metal is different from the ground state.Comment: 21 pages, 16 figures; v2: small correction in title, added 3
references, extended and reformulated a few paragraphs (detailed information
at the end of .tex file); added color to figure
Coupled-Cluster Approach to Electron Correlations in the Two-Dimensional Hubbard Model
We have studied electron correlations in the doped two-dimensional (2D)
Hubbard model by using the coupled-cluster method (CCM) to investigate whether
or not the method can be applied to correct the independent particle
approximations actually used in ab-initio band calculations. The double
excitation version of the CCM, implemented using the approximate coupled pair
(ACP) method, account for most of the correlation energies of the 2D Hubbard
model in the weak () and the intermediate regions (). The error is always less than 1% there. The ACP approximation gets
less accurate for large () and/or near half-filling.
Further incorporation of electron correlation effects is necessary in this
region. The accuracy does not depend on the system size and the gap between the
lowest unoccupied level and the highest occupied level due to the finite size
effect. Hence, the CCM may be favorably applied to ab-initio band calculations
on metals as well as semiconductors and insulators.Comment: RevTeX3.0, 4 pages, 4 figure
From protons to OXPHOS supercomplexes and Alzheimer's disease: Structure–dynamics–function relationships of energy-transducing membranes
AbstractBy the elucidation of high-resolution structures the view of the bioenergetic processes has become more precise. But in the face of these fundamental advances, many problems are still unresolved. We have examined a variety of aspects of energy-transducing membranes from large protein complexes down to the level of protons and functional relevant picosecond protein dynamics. Based on the central role of the ATP synthase for supplying the biological fuel ATP, one main emphasis was put on this protein complex from both chloroplast and mitochondria. In particular the stoichiometry of protons required for the synthesis of one ATP molecule and the supramolecular organisation of ATP synthases were examined. Since formation of supercomplexes also concerns other complexes of the respiratory chain, our work was directed to unravel this kind of organisation, e.g. of the OXPHOS supercomplex I1III2IV1, in terms of structure and function. Not only the large protein complexes or supercomplexes work as key players for biological energy conversion, but also small components as quinones which facilitate the transfer of electrons and protons. Therefore, their location in the membrane profile was determined by neutron diffraction. Physico-chemical features of the path of protons from the generators of the electrochemical gradient to the ATP synthase, as well as of their interaction with the membrane surface, could be elucidated by time-resolved absorption spectroscopy in combination with optical pH indicators. Diseases such as Alzheimer's dementia (AD) are triggered by perturbation of membranes and bioenergetics as demonstrated by our neutron scattering studies
Theoretical investigation of carbon defects and diffusion in α-quartz
The geometries, formation energies, and diffusion barriers of carbon point defects in silica (α-quartz) have been calculated using a charge-self-consistent density-functional based nonorthogonal tight-binding method. It is found that bonded interstitial carbon configurations have significantly lower formation energies (on the order of 5 eV) than substitutionals. The activation energy of atomic C diffusion via trapping and detrapping in interstitial positions is about 2.7 eV. Extraction of a CO molecule requires an activation energy <3.1 eV but the CO molecule can diffuse with an activation energy <0.4 eV. Retrapping in oxygen vacancies is hindered—unlike for O2—by a barrier of about 2 eV
Excitons in quasi-one dimensional organics: Strong correlation approximation
An exciton theory for quasi-one dimensional organic materials is developed in
the framework of the Su-Schrieffer-Heeger Hamiltonian augmented by short range
extended Hubbard interactions. Within a strong electron-electron correlation
approximation, the exciton properties are extensively studied. Using scattering
theory, we analytically obtain the exciton energy and wavefunction and derive a
criterion for the existence of a exciton. We also systematically
investigate the effect of impurities on the coherent motion of an exciton. The
coherence is measured by a suitably defined electron-hole correlation function.
It is shown that, for impurities with an on-site potential, a crossover
behavior will occur if the impurity strength is comparable to the bandwidth of
the exciton, corresponding to exciton localization. For a charged impurity with
a spatially extended potential, in addition to localization the exciton will
dissociate into an uncorrelated electron-hole pair when the impurity is
sufficiently strong to overcome the Coulomb interaction which binds the
electron-hole pair. Interchain coupling effects are also discussed by
considering two polymer chains coupled through nearest-neighbor interchain
hopping and interchain Coulomb interaction . Within the
matrix scattering formalism, for every center-of-mass momentum, we find two
poles determined only by , which correspond to the interchain
excitons. Finally, the exciton state is used to study the charge transfer from
a polymer chain to an adjacent dopant molecule.Comment: 24 pages, 23 eps figures, pdf file of the paper availabl
Dynamical simulations of polaron transport in conjugated polymers with the inclusion of electron-electron interactions
Dynamical simulations of polaron transport in conjugated polymers in the
presence of an external time-dependent electric field have been performed
within a combined extended Hubbard model (EHM) and Su-Schrieffer-Heeger (SSH)
model. Nearly all relevant electron-phonon and electron-electron interactions
are fully taken into account by solving the time-dependent Schr\"{o}dinger
equation for the -electrons and the Newton's equation of motion for the
backbone monomer displacements by virtue of the combination of the adaptive
time-dependent density matrix renormalization group (TDDMRG) and classical
molecular dynamics (MD). We find that after a smooth turn-on of the external
electric field the polaron is accelerated at first and then moves with a nearly
constant velocity as one entity consisting of both the charge and the lattice
deformation. An ohmic region (3 mV/ 9
mV/) where the stationary velocity increases linearly with the
electric field strength is observed for the case of =2.0 eV and =1.0 eV.
The maximal velocity is well above the speed of sound. Below 3 mV/
the polaron velocity increases nonlinearly and in high electric fields with
strength 10.0 mV/ the polaron will become unstable and
dissociate. The relationship between electron-electron interaction strengths
and polaron transport is also studied in detail. We find that the the on-site
Coulomb interactions will suppress the polaron transport and small
nearest-neighbor interactions values are also not beneficial to the
polaronic motion while large values favor the polaron transport
- …