20 research outputs found
Fibroblast growth factor-2, derived from cancer-associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling
Cancer-associated fibroblasts (CAFs) constitute a major compartment of the tumor microenvironment. In the present study, we investigated the role for CAFs in breast cancer progression and underlying molecular mechanisms. Human breast cancer MDA-MB-231 cells treated with the CAF-conditioned media manifested a more proliferative phenotype, as evidenced by enhanced messenger RNA (mRNA) expression of Cyclin D1, c-Myc, and proliferating cell nuclear antigen. Analysis of data from The Cancer Genome Atlas revealed that fibroblast growth factor-2 (FGF2) expression was well correlated with the presence of CAFs. We noticed that the mRNA level of FGF2 in CAFs was higher than that in normal fibroblasts. FGF2 exerts its biological effects through interaction with FGF receptor 1 (FGFR1). In the breast cancer tissue array, 42% estrogen receptor-negative patients coexpressed FGF2 and FGFR1, whereas only 19% estrogen receptor-positive patients exhibited coexpression. CAF-stimulated MDA-MB-231 cell migration and invasiveness were abolished when FGF2-neutralizing antibody was added to the conditioned media of CAFs. In a xenograft mouse model, coinjection of MDA-MB-231 cells with activated fibroblasts expressing FGF2 dramatically enhanced tumor growth, and this was abrogated by silencing of FGFR1 in cancer cells. In addition, treatment of MDA-MB-231 cells with FGF2 enhanced expression of Cyclin D1, a key molecule involved in cell cycle progression. FGF2-induced cell migration and upregulation of Cyclin D1 were abolished by siRNA-mediated FGFR1 silencing. Taken together, the above findings suggest that CAFs promote growth, migration and invasion of MDA-MB-231 cells via the paracrine FGF2-FGFR1 loop in the breast tumor microenvironment.
Development and validation of a deep learning-based automatic segmentation model for assessing intracranial volume: comparison with NeuroQuant, FreeSurfer, and SynthSeg
Background and purposeTo develop and validate a deep learning-based automatic segmentation model for assessing intracranial volume (ICV) and to compare the accuracy determined by NeuroQuant (NQ), FreeSurfer (FS), and SynthSeg.Materials and methodsThis retrospective study included 60 subjects [30 Alzheimer’s disease (AD), 21 mild cognitive impairment (MCI), 9 cognitively normal (CN)] from a single tertiary hospital for the training and validation group (50:10). The test group included 40 subjects (20 AD, 10 MCI, 10 CN) from the ADNI dataset. We propose a robust ICV segmentation model based on the foundational 2D UNet architecture trained with four types of input images (both single and multimodality using scaled or unscaled T1-weighted and T2-FLAIR MR images). To compare with our model, NQ, FS, and SynthSeg were also utilized in the test group. We evaluated the model performance by measuring the Dice similarity coefficient (DSC) and average volume difference.ResultsThe single-modality model trained with scaled T1-weighted images showed excellent performance with a DSC of 0.989 ± 0.002 and an average volume difference of 0.46% ± 0.38%. Our multimodality model trained with both unscaled T1-weighted and T2-FLAIR images showed similar performance with a DSC of 0.988 ± 0.002 and an average volume difference of 0.47% ± 0.35%. The overall average volume difference with our model showed relatively higher accuracy than NQ (2.15% ± 1.72%), FS (3.69% ± 2.93%), and SynthSeg (1.88% ± 1.18%). Furthermore, our model outperformed the three others in each subgroup of patients with AD, MCI, and CN subjects.ConclusionOur deep learning-based automatic ICV segmentation model showed excellent performance for the automatic evaluation of ICV
Resveratrol suppresses migration, invasion and sternness of human breast cancer cells by interfering with tumor-stromal cross-talk
Cancer-associated fibroblasts (CAFs) constitute a major compartment of the tumor microenvironment. CAFs produce a variety of cytokines, growth factors and extracellular matrix proteins, thereby stimulating tumor progression. CAFs are distinct from normal fibroblasts for their overexpression of a-smooth muscle actin. Recent studies suggest that CAFs play an important role in proliferation and migration of cancer cells through cross-talk with them. Resveratrol (trans-3,4'5,-trihydroxystilbene), a phytoalexin present in grapes, has been reported to possess chemopreventive and chemotherapeutic activities. In the present study, we examined the effects of resveratrol on CAF-induced migration, invasion and self-renewal activity of breast cancer cells. Resveratrol inhibited proliferation, migration and invasion of human breast cancer cells treated with CAF-conditioned media (CAF-CM). Resveratrol treatment suppressed the CAF-CM-induced expression of Cyclin D1, c-Myc, MMP-2 and MMP-9. In addition, resveratrol inhibited Sox2 expression as well as activation of Akt and STAT3 induced by CAF-CM in breast cancer cells. Further, resveratrol abrogated stemness properties and reduced the expression of self-renewal signaling molecules in stem-like breast cancer cells. Taken together, the present study provides insights into the role of resveratrol in tumor microenvironment with focus on interaction between cancer cells and the hosting niche
Regulation of the tumor suppressor PTEN by natural anticancer compounds
The tumor suppressor phosphatase and tensin homologue (PTEN) has phosphatase activity, with phosphatidylinositol (3,4,5)-trisphosphate (PIP3), a product of phosphatidylinositol 3-kinase (PI3K), as one of the principal substrates. PTEN is a negative regulator of the Akt pathway, which plays a fundamental role in controlling cell growth, survival, and proliferation. Loss of PTEN function has been observed in many different types of cancer. Functional inactivation of PTEN as a consequence of germ-line mutations or promoter hypermethylation predisposes individuals to malignancies. PTEN undergoes posttranslational modifications, such as oxidation, acetylation, phosphorylation, SUMOylation, and ubiquitination, which influence its catalytic activity, interactions with other proteins, and subcellular localization. Cellular redox status is crucial for posttranslational modification of PTEN and its functional consequences. Oxidative stress and inflammation are major causes of loss of PTEN function. Pharmacologic or nutritional restoration of PTEN function is considered a reliable strategy in the management of PTEN-defective cancer. In this review, we highlight natural compounds, such as curcumin, indol-3 carbinol, and omega-3 fatty acids, that have the potential to restore or potentiate PTEN expression/activity, thereby suppressing cancer cell proliferation, survival, and resistance to chemotherapeutic agents
Fibroblast growth factor‐2, derived from cancer‐associated fibroblasts, stimulates growth and progression of human breast cancer cells via FGFR1 signaling
Cancer-associated fibroblasts (CAFs) constitute a major compartment of the tumor microenvironment. In the present study, we investigated the role for CAFs in breast cancer progression and underlying molecular mechanisms. Human breast cancer MDA-MB-231 cells treated with the CAF-conditioned media manifested a more proliferative phenotype, as evidenced by enhanced messenger RNA (mRNA) expression of Cyclin D1, c-Myc, and proliferating cell nuclear antigen. Analysis of data from The Cancer Genome Atlas revealed that fibroblast growth factor-2 (FGF2) expression was well correlated with the presence of CAFs. We noticed that the mRNA level of FGF2 in CAFs was higher than that in normal fibroblasts. FGF2 exerts its biological effects through interaction with FGF receptor 1 (FGFR1). In the breast cancer tissue array, 42% estrogen receptor-negative patients coexpressed FGF2 and FGFR1, whereas only 19% estrogen receptor-positive patients exhibited coexpression. CAF-stimulated MDA-MB-231 cell migration and invasiveness were abolished when FGF2-neutralizing antibody was added to the conditioned media of CAFs. In a xenograft mouse model, coinjection of MDA-MB-231 cells with activated fibroblasts expressing FGF2 dramatically enhanced tumor growth, and this was abrogated by silencing of FGFR1 in cancer cells. In addition, treatment of MDA-MB-231 cells with FGF2 enhanced expression of Cyclin D1, a key molecule involved in cell cycle progression. FGF2-induced cell migration and upregulation of Cyclin D1 were abolished by siRNA-mediated FGFR1 silencing. Taken together, the above findings suggest that CAFs promote growth, migration and invasion of MDA-MB-231 cells via the paracrine FGF2-FGFR1 loop in the breast tumor microenvironment.N
Genistein Inhibits Proliferation of BRCA1 Mutated Breast Cancer Cells: The GPR30-Akt Axis as a Potential Target
Background: BRCA1 mutated breast cancer cells exhibit the elevated cell proliferation and the higher metastatic potential. G protein-coupled receptor 30 (GPR30) has been shown to regulate growth of hormonally responsive cancers, such as ovarian and breast cancers, and high expression of GPR30 is found in estrogen receptor (ER)-negative breast cancer cells. ER-negative breast cancer patients often have a mutation in the tumor suppressor gene, BRCA1. This study explored antiproliferative effects of genistein, a chemopreventive isoflavone present in legumes, and underlying molecular mechanisms in triple negative breast cancer cells with or without functionally active BRCA1. Methods: Expression of BRCA1, GPR30 and Nrf2 was measured by Western blot analysis. Reactive oxygen species (ROS) accumulation was monitored by using the fluorescence-generating probe, 2',7'-dichlorofluorescein diacetate. The effects of genistein on breast cancer cell viability and proliferation were assessed by the MTT, migration and clonogenic assays. Results: The expression of GPR30 was dramatically elevated at both transcriptional and translational levels in BRCA1 mutated breast cancer cells compared to cells with wild-type BRCA1. Notably, there was diminished Akt phosporylation in GPR30 silenced cells. Treatment of BRCA1 silenced breast cancer cells with genistein resulted in the down-regulation of GPR30 expression and the inhibition of Akt phosphorylation as well as the reduced cell viability, migration and colony formation. Genistein caused cell cycle arrest at the G(2)/M phase in BRCA1-mutant cells through down-regulation of cyclin B1 expression. Furthermore, BRCA1-mutant breast cancer cells exhibited higher levels of intracellular ROS than those in the wild-type cells. Genistein treatment lowered the ROS levels through up-regulation of Nrf2 expression. Conclusions: Lack of functional BRCA1 activates GPR30 signaling, thereby stimulating Akt phosphorylation and cell proliferation. Genistein induces G2/M phase arrest by down-regulating cyclin B1 expression, which is attributable to its suppression of GPR30 activation and Akt phosphorylation in BRCA1 impaired breast cancer cells
Nuclear Localization of Fibroblast Growth Factor Receptor 1 in Breast Cancer Cells Interacting with Cancer Associated Fibroblasts
Cancer-associated fibroblasts (CAFs) represent a major component of the tumor microenvironment and interplay with cancer cells by secreting cytokines, growth factors and extracellular matrix proteins. When estrogen receptor-negative breast cancer MDA-MB-231 cells were treated with the CAF-conditioned medium (CAF-CM), Akt and STAT3 involved in cell proliferation and survival were activated through phosphorylation. CAFs secrete fibroblast growth factor 2 (FGF2), thereby stimulating breast cancer cell progression. Akt activation induced by CAF-CM in MDA-MB-231 cells was abolished when FGF2-neutralizing antibody was added. Treatment of MDA-MB-231 cells directly with FGF2 enhanced the phosphorylation of Akt and the FGF receptor (FGFR) substrate, FRS2a. These events were abrogated by siRNA-mediated silencing of FGFR1. In a xenograft mouse model, co-injection of MDA-MB-231 cells with activated fibroblasts expressing FGF2 dramatically enhanced activation of Akt. Stable knockdown of FGFR1 blunted Akt phosphorylation in xenograft tumors. MDA-MB-231 cells co-cultured with CAFs or directly stimulated with FGF2 exhibited enhanced nuclear localization of FGFR1. Notably, FGF2 stimulation produced reactive oxygen species (ROS) accumulation in MDA-MB-231 cells, and FGF2-induced nuclear accumulation of FGFR1 was abrogated by the ROS scavenging agent, N-acetylcysteine.N
15-Deoxy-Delta(12,14)-prostaglandin J(2) activates PI3K-Akt signaling in human breast cancer cells through covalent modification of the tumor suppressor PTEN at cysteine 136
15-Deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), one of the terminal products of cyclooxygenase-2-catalized arachidonic acid metabolism, has been shown to stimulate breast cancer cell proliferation and migration through Akt activation, but the underlying mechanisms remain poorly understood. In the present study, we investigated the effects of 15d-PGJ(2) on the activity of PTEN, the inhibitor of the phosphoinositide 3-kinase (PI3K)-Akt axis, in human breast cancer (MCF-7) cells. Since the alpha,beta-unsaturated carbonyl moiety in the cyclopentenone ring of 15d-PGJ(2) is electrophilic, we hypothesized that 15d-PGJ(2)-induced Akt phosphorylation might result from the covalent modification and subsequent inactivation of PTEN that has several critical cysteine residues. When treated to MCF-7 cells, 15d-PGJ(2) bound to PTEN, and this was abolished in the presence of the thiol-reducing agent dithiothreitol. A mass spectrometric analysis by using recombinant and endogenous PTEN protein revealed that the cysteine 136 residue (Cys(136)) of PTEN is covalently modified upon treatment with 15d-PGJ(2). Notably, the ability of 15d-PGJ(2) to covalently bind to PTEN as well as to induce Akt phosphorylation was abolished in the cells expressing a mutant form of PTEN in which Cys(136) was replaced by serine ((sic)136S-PTEN). The present study demonstrates for the first time that electrophilic 15d-PGJ(2) directly binds to cysteine 136 of PTEN and provides new insight into PTEN loss in cancer progression associated with chronic inflammation. These observations suggest that 15d-PGJ(2) can undergo nucleophilic addition to PTEN, presumably at Cys(136), thereby inactivating this tumor suppressor protein with concomitant Akt activation. (C) 2018 Elsevier B.V. All rights reserved