44 research outputs found

    Influence of DNA extraction kits on freshwater fungal DNA metabarcoding

    Get PDF
    [Background] Environmental DNA (eDNA) metabarcoding is a common technique for efficient biodiversity monitoring, especially of microbes. Recently, the usefulness of aquatic eDNA in monitoring the diversity of both terrestrial and aquatic fungi has been suggested. In eDNA studies, different experimental factors, such as DNA extraction kits or methods, can affect the subsequent analyses and the results of DNA metabarcoding. However, few methodological studies have been carried out on eDNA of fungi, and little is known about how experimental procedures can affect the results of biodiversity analysis. In this study, we focused on the effect of DNA extraction method on fungal DNA metabarcoding using freshwater samples obtained from rivers and lakes. [Methods] DNA was extracted from freshwater samples using the DNeasy PowerSoil kit, which is mainly used to extractmicrobial DNA from soil, and the DNeasy Blood & Tissue kit, which is commonly used for eDNA studies on animals. We then compared PCR inhibition and fungal DNA metabarcoding results; i.e., operational taxonomic unit (OTU) number and composition of the extracted samples. [Results] No PCR inhibition was detected in any of the samples, and no significant differences in the number of OTUs and OTU compositions were detected between the samples processed using different kits. These results indicate that both DNA extraction kits may provide similar diversity results for the river and lake samples evaluated in this study. Therefore, it may be possible to evaluate the diversity of fungi using a unified experimental method, even with samples obtained for diversity studies on other taxa such as those of animals

    Evaluation of host effects on ectomycorrhizal fungal community compositions in a forested landscape in northern Japan

    Get PDF
    Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.4853145.Community compositions of ectomycorrhizal (ECM) fungi are similar within the same host taxa. However, careful interpretation is required to determine whether the combination of ECM fungi and plants is explained by the host preference for ECM fungi, or by the influence of neighbouring heterospecific hosts. In the present study, we aimed to evaluate the effects of host species on the ECM community compositions in a forested landscape (approx. 10 km) where monodominant forest stands of six ECM host species belonging to three families were patchily distributed. A total of 180 ECM operational taxonomic units (OTUs) were detected with DNA metabarcoding. Quantitative multivariate analyses revealed that the ECM community compositions were primarily structured by host species and families, regardless of the soil environments and spatial arrangements of the sampling plots. In addition, 38 ECM OTUs were only detected from particular host tree species. Furthermore, the neighbouring plots harboured similar fungal compositions, although the host species were different. The relative effect of the spatial factors on the ECM compositions was weaker than that of host species. Our results suggest that the host preference for ECM fungi is the primary determinant of ECM fungal compositions in the forested landscape

    Genome-Wide Association Study Confirming Association of HLA-DP with Protection against Chronic Hepatitis B and Viral Clearance in Japanese and Korean

    Get PDF
    Hepatitis B virus (HBV) infection can lead to serious liver diseases, including liver cirrhosis (LC) and hepatocellular carcinoma (HCC); however, about 85–90% of infected individuals become inactive carriers with sustained biochemical remission and very low risk of LC or HCC. To identify host genetic factors contributing to HBV clearance, we conducted genome-wide association studies (GWAS) and replication analysis using samples from HBV carriers and spontaneously HBV-resolved Japanese and Korean individuals. Association analysis in the Japanese and Korean data identified the HLA-DPA1 and HLA-DPB1 genes with Pmeta = 1.89×10−12 for rs3077 and Pmeta = 9.69×10−10 for rs9277542. We also found that the HLA-DPA1 and HLA-DPB1 genes were significantly associated with protective effects against chronic hepatitis B (CHB) in Japanese, Korean and other Asian populations, including Chinese and Thai individuals (Pmeta = 4.40×10−19 for rs3077 and Pmeta = 1.28×10−15 for rs9277542). These results suggest that the associations between the HLA-DP locus and the protective effects against persistent HBV infection and with clearance of HBV were replicated widely in East Asian populations; however, there are no reports of GWAS in Caucasian or African populations. Based on the GWAS in this study, there were no significant SNPs associated with HCC development. To clarify the pathogenesis of CHB and the mechanisms of HBV clearance, further studies are necessary, including functional analyses of the HLA-DP molecule

    Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.

    Full text link
    The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders

    hiPSCs-derived SKPs display multipotency similar to traditionally isolated SKPs.

    Full text link
    <p>(A) Adipogenic differentiation of hiPSC-SKPs was confirmed by Oil Red-O staining and the up-regulation of PPARγ gene expression by qPCR. (B) Osteogenic differentiation was confirmed by ALP staining and the up-regulation of RUNX2 and COL1A1 gene expression by qPCR. (C) Differentiated Schwann cell lineages were detected by S100β staining. Scale bars, 50 μm. UD: undifferentiated hiPSC-SKPs, Dif: differentiated hiPSC-SKPs.</p

    Laminin fragments conjugated with perlecan’s growth factor-binding domain differentiate human induced pluripotent stem cells into skin-derived precursor cells

    Full text link
    Abstract Deriving stem cells to regenerate full-thickness human skin is important for treating skin disorders without invasive surgical procedures. Our previous protocol to differentiate human induced pluripotent stem cells (iPSCs) into skin-derived precursor cells (SKPs) as a source of dermal stem cells employs mouse fibroblasts as feeder cells and is therefore unsuitable for clinical use. Herein, we report a feeder-free method for differentiating iPSCs into SKPs by customising culture substrates. We immunohistochemically screened for laminins expressed in dermal papillae (DP) and explored the conditions for inducing the differentiation of iPSCs into SKPs on recombinant laminin E8 (LM-E8) fragments with or without conjugation to domain I of perlecan (PDI), which binds to growth factors through heparan sulphate chains. Several LM-E8 fragments, including those of LM111, 121, 332, 421, 511, and 521, supported iPSC differentiation into SKPs without PDI conjugation. However, the SKP yield was significantly enhanced on PDI-conjugated LM-E8 fragments. SKPs induced on PDI-conjugated LM111-E8 fragments retained the gene expression patterns characteristic of SKPs, as well as the ability to differentiate into adipocytes, osteocytes, and Schwann cells. Thus, PDI-conjugated LM-E8 fragments are promising agents for inducing iPSC differentiation into SKPs in clinical settings

    Human SKPs induction is driven by WNT activation.

    Full text link
    <p>(A) Effective concentration of CHIR needed to induce hiPSC-SKPs. (B) Effects of modifiers used to induce hiPSC-SKPs. After noggin and SB treatment for 5 days, cells were cultured in SKPs medium with signal activators or inhibitors as noted for 4 days.</p

    Generation of SKPs from hiPSCs.

    Full text link
    <p>(A) Summary of the established protocol used to differentiate hiPSC-SKPs. Human iPSCs were cultured in initial differentiation medium with recombinant noggin and a TGF-β inhibitor (SB431542: SB). At day 5 of differentiation, the medium was changed to SKPs medium containing a WNT agonist (CHIR99021: CHIR) for 4 days. When the cells reached 80% confluence, they were dissociated and subcultured in new dishes in SKPs medium without CHIR. (B) Morphological characteristics of hiPSCs during differentiation.</p
    corecore