235 research outputs found

    Kron Reduction and Effective Resistance of Directed Graphs

    Full text link
    In network theory, the concept of effective resistance is a distance measure on a graph that relates the global network properties to individual connections between nodes. In addition, the Kron reduction method is a standard tool for reducing or eliminating the desired nodes, which preserves the interconnection structure and the effective resistance of the original graph. Although these two graph-theoretic concepts stem from the electric network on an undirected graph, they also have a number of applications throughout a wide variety of other fields. In this study, we propose a generalization of a Kron reduction for directed graphs. Furthermore, we prove that this reduction method preserves the structure of the original graphs, such as the strong connectivity or weight balance. In addition, we generalize the effective resistance to a directed graph using Markov chain theory, which is invariant under a Kron reduction. Although the effective resistance of our proposal is asymmetric, we prove that it induces two novel graph metrics in general strongly connected directed graphs. In particular, the effective resistance captures the commute and covering times for strongly connected weight balanced directed graphs. Finally, we compare our method with existing approaches and relate the hitting probability metrics and effective resistance in a stochastic case. In addition, we show that the effective resistance in a doubly stochastic case is the same as the resistance distance in an ergodic Markov chain

    Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization

    Full text link
    We aimed to evaluate computer-aided diagnosis (CADx) system for lung nodule classification focusing on (i) usefulness of gradient tree boosting (XGBoost) and (ii) effectiveness of parameter optimization using Bayesian optimization (Tree Parzen Estimator, TPE) and random search. 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of local binary pattern was used for calculating feature vectors. Support vector machine (SVM) or XGBoost was trained using the feature vectors and their labels. TPE or random search was used for parameter optimization of SVM and XGBoost. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost were 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. In conclusion, XGBoost was better than SVM for classifying lung nodules. TPE was more efficient than random search for parameter optimization.Comment: 29 pages, 4 figure

    Visualizing the Cascade Effect of Redesigning Features in an EMR System

    Get PDF
    Electronic Medical Record (EMR) systems are complex systems with interdependent features. Redesigning one feature of the system can create a cascade effect affecting the other features. By calculating the cascade effect, the designers can understand how each individual feature could be affected. This understanding allows them to maximize the positive effects and avoid negative consequences of their redesign activities. To understand the cascade effect, the designers can look at their computations’ results; a task that becomes more difficult when the number of features grows. To reduce their task load, we propose a tool for visualizing the cascade effect of redesigning features in an EMR system. Our preliminary evaluation with six graduate students shows that visualizing the cascade effect reduces the task load and slightly improves their performance when analyzing the cascade effect. Ways for improving the tool include (i) showing the computation results within the visualization, and (ii) allowing the designers to compare the cascade effect generated by redesigning different features

    Token Economy–Based Hospital Bed Allocation to Mitigate Information Asymmetry: Proof-of-Concept Study Through Simulation Implementation

    Get PDF
    [Background:] Hospital bed management is an important resource allocation task in hospital management, but currently, it is a challenging task. However, acquiring an optimal solution is also difficult because intraorganizational information asymmetry exists. Signaling, as defined in the fields of economics, can be used to mitigate this problem. [Objective:] We aimed to develop an assignment process that is based on a token economy as signaling intermediary. [Methods:] We implemented a game-like simulation, representing token economy–based bed assignments, in which 3 players act as ward managers of 3 inpatient wards (1 each). As a preliminary evaluation, we recruited 9 nurse managers to play and then participate in a survey about qualitative perceptions for current and proposed methods (7-point Likert scale). We also asked them about preferred rewards for collected tokens. In addition, we quantitatively recorded participant pricing behavior. [Results:] Participants scored the token economy–method positively in staff satisfaction (3.89 points vs 2.67 points) and patient safety (4.38 points vs 3.50 points) compared to the current method, but they scored the proposed method negatively for managerial rivalry, staff employee development, and benefit for patients. The majority of participants (7 out of 9) listed human resources as the preferred reward for tokens. There were slight associations between workload information and pricing. [Conclusions:] Survey results indicate that the proposed method can improve staff satisfaction and patient safety by increasing the decision-making autonomy of staff but may also increase managerial rivalry, as expected from existing criticism for decentralized decision-making. Participant behavior indicated that token-based pricing can act as a signaling intermediary. Given responses related to rewards, a token system that is designed to incorporate human resource allocation is a promising method. Based on aforementioned discussion, we concluded that a token economy–based bed allocation system has the potential to be an optimal method by mitigating information asymmetry

    Recognition of Instrument Passing and Group Attention for Understanding Intraoperative State of Surgical Team

    Get PDF
    Appropriate evaluation of the intraoperative state of a surgical team is essential for the improvement of teamwork and hence a safe surgical environment. Traditional methods to evaluate intraoperative team states such as interview and self-check questionnaire on each surgical team member often require human efforts, which are time-consuming and can be biased by individual recall. One effective solution is to analyze the surgical video and track the important team activities, such as whether the members are complying with the surgical procedure or are being distracted by unexpected events. However, due to the complexity of the situations in an operating room, identifying the team activities without any human effort remains challenging. In this work, we propose a novel approach that automatically recognizes and quantifies intraoperative activities from surgery videos. As a first step, we focus on recognizing two activities that especially involve multiple individuals: (a) passing of clean-packaged surgery instruments which is a representative interaction between the surgical technologists such as the circulating nurse and scrub nurse, and (b) group attention that may be attracted by unexpected events. We record surgical videos as input, and apply pose estimation and particle filters to extract individual's face orientation, body orientation, and arm raise. These results coupled with individual IDs are then sent to an estimation model that provides the probability of each target activity. Simultaneously, a person model is generated and bound to each individual, which describes all the involved activities along the timeline. We tested our method using videos of simulated activities. The results showed that the system was able to recognize instrument passing and group attention with F1 = 0.95 and F1 = 0.66, respectively. We also implemented a system with an interface that automatically annotated intraoperative activities along the video timeline, and invited feedback from surgical technologists. The results suggest that the quantified and visualized activities can help improve understanding of the intraoperative state of the surgical team

    Design Elements of Pervasive Games for Elderly Players: A Social Interaction Study Case

    Get PDF
    We present the design process and evaluation of a pervasive, location-based mobile game created to act as an experiment system and allow evaluation of how different design elements can influence player behaviour, using social interaction as a study case. A feasibility study with a group of community dwelling elderly volunteers from the city of Kyoto, Japan, was performed to evaluate the system. Results showed that the choice of theme and overall design of game was adequate, and that elderly people could understand the game rules and their goals while playing. Points of improvement included reducing the complexity of game controls and changing social interaction mechanics to account for situations when there are only a few players active or players are too far apart

    A Paraganglioma in a Hypertensive Patient with Unilateral Renal Hypoplasia

    Get PDF
    We report the case of a 46-year-old hypertensive Japanese female with renal insufficiency related to unilateral renal hypoplasia. The patient was found to have developed paraganglioma in the retroperitoneal space over a 5-year period. Catecholamine-producing tumors are not usually recognized as conditions associated with renal hypoplasia. Our long-term observation of the patient eventually led us to the diagnosis of paraganglioma. In hypertensive patients with chronic kidney disease, not only the renin-angiotensin-aldosterone system but also catecholamine activity may be involved, particularly in the patients whose cases are complicated with unilateral renal hypoplasia

    Promoting Physical Activity in Japanese Older Adults Using a Social Pervasive Game: Randomized Controlled Trial

    Get PDF
    Background: Pervasive games aim to create more fun and engaging experiences by mixing elements from the real world into the game world. Because they intermingle with players’ lives and naturally promote more casual gameplay, they could be a powerful strategy to stimulate physical activity among older adults. However, to use these games more effectively, it is necessary to understand how design elements of the game affect player behavior. Objective: The aim of this study was to evaluate how the presence of a specific design element, namely social interaction, would affect levels of physical activity. Methods: Participants were recruited offline and randomly assigned to control and intervention groups in a single-blind design. Over 4 weeks, two variations of the same pervasive game were compared: with social interaction (intervention group) and with no social interaction (control group). In both versions, players had to walk to physical locations and collect virtual cards, but the social interaction version allowed people to collaborate to obtain more cards. Changes in the weekly step counts were used to evaluate the effect on each group, and the number of places visited was used as an indicator of play activity. Results: A total of 20 participants were recruited (no social interaction group, n=10; social interaction group, n=10); 18 participants remained active until the end of the study (no social interaction group, n=9; social interaction group, n=9). Step counts during the first week were used as the baseline level of physical activity (no social interaction group: mean 46, 697.2, SE 7905.4; social interaction group: mean 45, 967.3, SE 8260.7). For the subsequent weeks, changes to individual baseline values (absolute/proportional) for the no social interaction group were as follows: 1583.3 (SE 3108.3)/4.6% (SE 7.2%) (week 2), 591.5 (SE 2414.5)/2.4% (SE 4.7%) (week 3), and −1041.8 (SE 1992.7)/0.6% (SE 4.4%) (week 4). For the social interaction group, changes to individual baseline values were as follows: 11520.0 (SE 3941.5)/28.0% (SE 8.7%) (week 2), 9567.3 (SE 2631.5)/23.0% (SE 5.1%) (week 3), and 7648.7 (SE 3900.9)/13.9% (SE 8.0%) (week 4). The result of the analysis of the group effect was significant (absolute change: η2=0.31, P=.04; proportional change: η2=0.30, P=.03). Correlations between both absolute and proportional change and the play activity were significant (absolute change: r=0.59, 95% CI 0.32 to 0.77; proportional change: r=0.39, 95% CI 0.08 to 0.64). Conclusions: The presence of social interaction design elements in pervasive games appears to have a positive effect on levels of physical activity. Trial Registration: Japan Medical Association Clinical Trial Registration Number JMA-IIA00314; https://tinyurl.com/y5nh6ylr (Archived by WebCite at http://www.webcitation.org/761a6MVAy
    corecore