39 research outputs found

    Reduced responsiveness is an essential feature of chronic fatigue syndrome: A fMRI study

    Get PDF
    BACKGROUND: Although the neural mechanism of chronic fatigue syndrome has been investigated by a number of researchers, it remains poorly understood. METHODS: Using functional magnetic resonance imaging, we studied brain responsiveness in 6 male chronic fatigue syndrome patients and in 7 age-matched male healthy volunteers. Responsiveness of auditory cortices to transient, short-lived, noise reduction was measured while subjects performed a fatigue-inducing continual visual search task. RESULTS: Responsiveness of the task-dependent brain regions was decreased after the fatigue-inducing task in the normal and chronic fatigue syndrome subjects and the decrement of the responsiveness was equivalent between the 2 groups. In contrast, during the fatigue-inducing period, although responsiveness of auditory cortices remained constant in the normal subjects, it was attenuated in the chronic fatigue syndrome patients. In addition, the rate of this attenuation was positively correlated with the subjective sensation of fatigue as measured using a fatigue visual analogue scale, immediately before the magnetic resonance imaging session. CONCLUSION: Chronic fatigue syndrome may be characterised by attenuation of the responsiveness to stimuli not directly related to the fatigue-inducing task

    Intracellular lumen extension requires ERM-1-dependent apical membrane expansion and AQP-8-mediated flux

    Get PDF
    SUMMARY Many unicellular tubes such as capillaries form lumens intracellularly, a process that is not well understood. Here we show that the cortical membrane organizer ERM-1 is required to expand the intracellular apical/lumenal membrane and its actin undercoat during single-cell C.elegans excretory canal morphogenesis. We characterize AQP-8, identified in an ERM-1 overexpression (ERM-1[++]) suppressor screen, as a canalicular aquaporin that interacts with ERM-1 in lumen extension in a mercury-sensitive manner, implicating water-channel activity. AQP-8 is transiently recruited to the lumen by ERM-1, co-localizing in peri-lumenal cuffs interspaced along expanding canals. An ERM-1[++]-mediated increase in the number of lumen-associated canaliculi is reversed by AQP-8 depletion. We propose that the ERM-1-AQP-8 interaction propels lumen extension by translumenal flux, suggesting a direct morphogenetic effect of water-channel-regulated fluid pressure

    Histochemical localization of sialic acids and antimicrobial substances in eccrine glands of porcine snout skin

    Get PDF
    The distribution of sialic acids and antimicrobial products (lysozyme, IgA, lactoferrin, β-defensin 2) as well as Rab3D in the eccrine glands of porcine snout skin was studied by sialoglycoconjugate histochemistry and immunohistochemistry. The secretory epithelium consisted of two types of secretory cells: dark and clear cells. The dark cells exhibited considerable amounts of sialoglycoconjugates, which included O-acetylated sialic acids, whereas sialic acids in the sequence Siaα2-3Gal1-4GlcNAc were confined to some of the dark cells. All antimicrobial substances and Rab3D were demonstrated to be also mainly present in some of the dark cells. Additionally, in the cytological and cytochemical features, the different characteristics were observed among the dark cells. The results obtained are discussed with regard to the functional significance of the eccrine glands. The secretory products elaborated by this gland type may function as protective agents in order to preserve the skin integrity of the snout region, considering that sialic acids and antimicrobial substances are important in general defense mechanisms
    corecore