20 research outputs found

    Difference in Serum Levels of Vitamin D Between Canalolithiasis and Cupulolithiasis of the Horizontal Semicircular Canal in Benign Paroxysmal Positional Vertigo

    Get PDF
    Background and Purpose: In the horizontal canal benign paroxysmal positional vertigo (BPPV), cupulolithiasis shows apogeotropic direction changing nystagmus lasting more than 1 min, while canalolithiasis leads to geotropic direction changing nystagmus lasting < 1 min. The difference between cupulolithiasis and canalolithiasis is widely accepted to be the attachment of the displaced otoconia to the cupula of a semicircular canal. Several studies have shown a relationship between BPPV and vitamin D deficiency, but no studies have compared serum levels of vitamin D between canalolithiasis and cupulolithiasis patients. The purpose of this study was to clarify the difference in vitamin D serum level between canalolithiasis and cupulolithiasis of the horizontal canal.Methods: This retrospective study included 20 and 15 patients with canalolithiasis and cupulolithiasis of the horizontal canal, respectively. Serum levels of 25-hydroxyvitamin D [25(OH)D] during the acute phase of BPPV were measured.Results: The mean 25(OH)D serum level in patients with canalolithiasis and cupulolithiasis was 13.2 ± 1.4 and 20.4 ± 1.6 ng/mL, respectively, and the difference was statistically significant (p = 0.0014), also after adjusting for age and sex (p = 0.0351). Eighteen out of 20 (90%) and 5 of 15 (33%) patients were diagnosed with vitamin D deficiency in the canalolithiasis and cupulolithiasis groups, respectively, and this difference was also statistically significant (p = 0.0005).Conclusion: We found that serum vitamin D level in patients with canalolithiasis was significantly lower than that in patients with cupulolithiasis of the horizontal canal

    Smaller Hippocampal Volume and Degraded Peripheral Hearing Among Japanese Community Dwellers

    Get PDF
    A growing body of literature has demonstrated that dementia and hearing loss are interrelated. Recent interest in dementia research has expanded to brain imaging analyses with auditory function. The aim of this study was to investigate the link between hearing ability, which was assessed using pure-tone audiometry, and the volume of brain regions, specifically the hippocampus, entorhinal cortex, Heschl’s gyrus, and total gray matter, using Freesurfer software and T1-weighted brain magnetic resonance imaging. The data for 2082 samples (age range = 40–89 years) were extracted from a population-based cohort of community dwellers. Hearing-impaired individuals showed significantly smaller hippocampal volumes compared with their non-hearing-impaired counterparts for all auditory frequency ranges. In addition, a correlational analysis showed a significant dose-response relationship for hearing ability and hippocampal volume after adjusting for potential confounding factors so that the more degraded the peripheral hearing was, the smaller the hippocampal volume was. This association was consistent through the auditory frequency range. The volume of the entorhinal cortex, right Heschl’s gyrus and total gray matter did not correlate with hearing level at any frequency. The volume of the left Heschl’s gyrus showed a significant relationship with the hearing levels for some auditory frequencies. The current results suggested that the presence of hearing loss after middle age could be a modifier of hippocampal atrophy

    Hearing impairment risk and interaction of folate metabolism related gene polymorphisms in an aging study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent investigations demonstrated many genetic contributions to the development of human age-related hearing impairment (ARHI), however, reports of factors associated with a reduction in the ARHI risk are rare. Folate metabolism is essential for cellular functioning. Despite the extensive investigations regarding the roles of folate metabolism related gene polymorphisms in the pathophysiology of complex diseases, such as cancer, cardio-cerebrovascular disease, and atherosclerosis, little is known about the association with ARHI. The aim of this study is to investigate the effects of the methionine synthase (MTR) A2756G and methylenetetrahydrofolate reductase (MTHFR) C677T gene polymorphisms on the risk of hearing impairment in middle-aged and elderly Japanese.</p> <p>Methods</p> <p>Data were collected from community-dwelling Japanese adults aged 40-84 years who participated in the Longitudinal Study of Aging biennially between 1997 and 2008. We analyzed cumulative data (5,167 samples in accumulated total) using generalized estimating equations.</p> <p>Results</p> <p>The MTHFR 677T allele was significantly associated with a reduced risk of hearing impairment only when the subjects were wild-type homozygotes for MTR A2756G. The per-T allele odds ratio of MTHFR for the risk of developing hearing impairment was 0.7609 (95% CI: 0.6178-0.9372) in the MTR AA genotype. In addition, a subgroup analysis demonstrated that the favorable effect of the MTHFR 677T allele on the risk of developing hearing impairment was independent of folate and homocysteine level, whereas plasma total homocysteine level was independently associated with an increased risk of developing hearing impairment. The interactive effect of gene polymorphisms associated with folate metabolism may modify the risk of developing hearing impairment after middle age. These results contribute to the elucidation of the causes of ARHI.</p> <p>Conclusions</p> <p>The present study has found that the MTHFR 677T allele has a favorable effect on a risk of hearing impairment in the middle-aged and elderly population, only when the individuals were wild-type homozygotes for MTR A2756G.</p

    Progress and Prospects in Human Genetic Research into Age-Related Hearing Impairment

    No full text
    Age-related hearing impairment (ARHI) is a complex, multifactorial disorder that is attributable to confounding intrinsic and extrinsic factors. The degree of impairment shows substantial variation between individuals, as is also observed in the senescence of other functions. This individual variation would seem to refute the stereotypical view that hearing deterioration with age is inevitable and may indicate that there is ample scope for preventive intervention. Genetic predisposition could account for a sizable proportion of interindividual variation. Over the past decade or so, tremendous progress has been made through research into the genetics of various forms of hearing impairment, including ARHI and our knowledge of the complex mechanisms of auditory function has increased substantially. Here, we give an overview of recent investigations aimed at identifying the genetic risk factors involved in ARHI and of what we currently know about its pathophysiology. This review is divided into the following sections: (i) genes causing monogenic hearing impairment with phenotypic similarities to ARHI; (ii) genes involved in oxidative stress, biologic stress responses, and mitochondrial dysfunction; and (iii) candidate genes for senescence, other geriatric diseases, and neurodegeneration. Progress and prospects in genetic research are discussed

    Progress and Prospects in Human Genetic Research into Age-Related Hearing Impairment

    No full text
    Age-related hearing impairment (ARHI) is a complex, multifactorial disorder that is attributable to confounding intrinsic and extrinsic factors. The degree of impairment shows substantial variation between individuals, as is also observed in the senescence of other functions. This individual variation would seem to refute the stereotypical view that hearing deterioration with age is inevitable and may indicate that there is ample scope for preventive intervention. Genetic predisposition could account for a sizable proportion of interindividual variation. Over the past decade or so, tremendous progress has been made through research into the genetics of various forms of hearing impairment, including ARHI and our knowledge of the complex mechanisms of auditory function has increased substantially. Here, we give an overview of recent investigations aimed at identifying the genetic risk factors involved in ARHI and of what we currently know about its pathophysiology. This review is divided into the following sections: (i) genes causing monogenic hearing impairment with phenotypic similarities to ARHI; (ii) genes involved in oxidative stress, biologic stress responses, and mitochondrial dysfunction; and (iii) candidate genes for senescence, other geriatric diseases, and neurodegeneration. Progress and prospects in genetic research are discussed
    corecore