75 research outputs found
Biallelic mutations in <i>KDSR </i>disrupt ceramide synthesis and result in a spectrum of keratinization disorders associated with thrombocytopenia
Mutations in ceramide biosynthesis pathways have been implicated in a few Mendelian disorders of keratinization, although ceramides are known to have key roles in several biological processes in skin and other tissues. Using whole-exome sequencing in four probands with undiagnosed skin hyperkeratosis/ichthyosis, we identified compound heterozygosity for mutations in KDSR, encoding an enzyme in the de novo synthesis pathway of ceramides. Two individuals had hyperkeratosis confined to palms, soles, and anogenital skin, whereas the other two had more severe, generalized harlequin ichthyosis-like skin. Thrombocytopenia was present in all patients. The mutations in KDSR were associated with reduced ceramide levels in skin and impaired platelet function. KDSR enzymatic activity was variably reduced in all patients, resulting in defective acylceramide synthesis. Mutations in KDSR have recently been reported in inherited recessive forms of progressive symmetric erythrokeratoderma, but our study shows that biallelic mutations in KDSR are implicated in an extended spectrum of disorders of keratinization in which thrombocytopenia is also part of the phenotype. Mutations in KDSR cause defective ceramide biosynthesis, underscoring the importance of ceramide and sphingosine synthesis pathways in skin and platelet biology
Effects of single therapeutic doses of promethazine, fexofenadine and olopatadine on psychomotor function and histamine-induced wheal- and flare-responses: a randomized double-blind, placebo-controlled study in healthy volunteers
Since most first-generation antihistamines have undesirable sedative effects on the central nervous systems (CNS), newer (second-generation) antihistamines have been developed to improve patients’ quality of life. However, there are few reports that directly compare the antihistaminic efficacy and impairment of psychomotor functions. We designed a double-blind, placebo controlled, crossover study to concurrently compare the clinical effectiveness of promethazine, a first-generation antihistamine, and fexofenadine and olopatadine, second-generation antihistamines, by measuring their potency as peripheral inhibitors of histamine-induced wheal and flare. Further, we investigated their sedative effects on the CNS using a battery of psychomotor tests. When single therapeutic doses of fexofenadine (60 mg), olopatadine (5 mg) and promethazine (25 mg) were given in a double-blind manner to 24 healthy volunteers, all antihistamines produced a significant reduction in the wheal and flare responses induced by histamine. In the comparison among antihistamines, olopatadine showed a rapid inhibitory effect compared with fexofenadine and promethazine, and had a potent effect compared with promethazine. In a battery of psychomotor assessments using critical flicker fusion, choice reaction time, compensatory tracking, rapid visual information processing and a line analogue rating scale as a subjective assessment of sedation, promethazine significantly impaired psychomotor function. Fexofenadine and olopatadine had no significant effect in any of the psychomotor tests. Promethazine, fexofenadine and olopatadine did not affect behavioral activity, as measured by wrist actigraphy. These results suggest that olopatadine at a therapeutic dose has greater antihistaminergic activity than promethazine, and olopatadine and fexofenadine did not cause cognitive or psychomotor impairment
A New ELISA for Dermatomyositis Autoantibodies: Rapid Introduction of Autoantigen cDNA to Recombinant Assays for Autoantibody Measurement
Advances in immunology, biochemistry, and molecular biology have enabled the development of a number of assays for measuring autoantibodies. ELISA has been widely used, because it can deal with relatively large numbers of serum samples more quickly than other immunologic methods, such as immunoblotting and immunoprecipitation. Recombinant autoantigens, which are generally produced in E. coli using the relevant cloned cDNA, are necessary for ELISA. Conventional clinical ELISA tests are limited in their ability to purify proteins free of bacterial contaminants, and the process is labor intensive. We recently developed new ELISA tests that utilize simple in vitro transcription and translation labeling of autoantigens in order to measure dermatomyositis- (DM-) specific autoantibodies, including autoantibodies to Mi-2, MDA5, NXP-2, TIF1-α, and TIF1-γ. This method may allow for the rapid conversion of cDNAs to a chemiluminescent ELISA to detect autoantibodies that are found not only in DM but also in other autoimmune diseases
- …