23 research outputs found
Posttraumatic cartilage degradation progresses following anterior cruciate ligament reconstruction: A second-look arthroscopic evaluation
BACKGROUND:
Several studies have demonstrated that posttraumatic knee osteoarthritis progresses even after anterior cruciate ligament reconstruction. Few reports described zone-specific cartilaginous damages after anterior cruciate ligament reconstruction. This study aimed to compare the status of articular cartilage at anterior cruciate ligament reconstruction with that at second-look arthroscopy.
METHODS:
This study included 20 patients (20 knees, 10 males and 10 females, mean age 22.4 years, Body mass index 24.4 kg/m2) that underwent arthroscopic anatomic double-bundle anterior cruciate ligament reconstruction and second-look arthroscopy. Mean periods from injury to reconstruction and from reconstruction to second-look arthroscopy were 3.4 and 15.3 months, respectively. Cartilage lesions were evaluated arthroscopically in the 6 articular surfaces and 40 articular subcompartments independently, and these features were graded with the International Cartilage Repair Society articular cartilage injury classification; comparisons were made between the grades at reconstruction and at second-look arthroscopy. Furthermore, clinical outcomes were assessed at reconstruction and at second-look arthroscopy, using the Lysholm knee score, Tegner activity scale, International Knee Documentation Committee score, Knee injury and Osteoarthritis Outcome Score, side-to-side difference of the KT-2000 arthrometer, and pivot shift test.
RESULTS:
Each compartment showed a deteriorated condition at second-look arthroscopy compared with the pre-reconstruction period. A significant worsening of the articular cartilage was noted in all compartments except the lateral tibial plateau and was also observed in the central region of the medial femoral condyle and trochlea after reconstruction. However, each clinical outcome was significantly improved postoperatively.
CONCLUSIONS:
Good cartilage conditions were restored in most subcompartments at second-look arthroscopy. Furthermore, posttraumatic osteoarthritic changes in the patellofemoral and medial compartments progressed even in the early postoperative period, although good knee stability and clinical outcomes were obtained. Care is necessary regarding the progression of osteoarthritis and the appearance of knee symptoms in patients undergoing anterior cruciate ligament reconstruction
Post-traumatic Articular Cartilage Lesions Increase at Second-look Arthroscopy Following Primary Anterior Cruciate Ligament Reconstruction
Anterior cruciate ligament (ACL) reconstruction (ACLR) after ACL rupture improves the instability of the knee joint and decreases mechanical stress to the meniscus and articular cartilage. However, there are reports that post-traumatic osteoarthritis (PTOA) is observed over time following ACLR. In this study, we assessed changes in cartilage lesions by arthroscopic findings following anatomical double-bundle ACLR and at post-operative second-look arthroscopy about 14 months later. We retrospectively evaluated 37 knees in cases with patients <40 years of age who had undergone an anatomical double-bundle ACL reconstruction <1 year after ACL rupture injury from March 2012 to December 2016. Clinical results and arthroscopic cartilage/meniscal lesion were evaluated and compared between a cartilage lesion-detected group and intact-cartilage group. Surgery improved anteroposterior laxity and other clinical measures; however, cartilage lesions were detected at 11 sites during ACLR and at 54 sites at second-look arthroscopy. The periods from injury to second-look arthroscopy and from ACLR to second-look arthroscopy were significantly longer in the cartilage-lesion group (n=23) than in the intact-cartilage group (n=14). Conversely, 96% of meniscal damage observed during ACLR was cured at the time of second-look arthroscopy. Knee articular cartilage lesions after ACL rupture cannot be completely suppressed, even using the anatomical ACL reconstruction technique. This study suggested that articular cartilage lesions can progress to a level that can be confirmed arthroscopically at approximately 17 months after ACL injury. Therefore, in ACLR patients, the possibility of developing knee articular cartilage lesions and PTOA should be considered
p53-Armed Oncolytic Virotherapy Improves Radiosensitivity in Soft-Tissue Sarcoma by Suppressing BCL-xL Expression
Soft-tissue sarcoma (STS) is a heterogeneous group of rare tumors originating predominantly from the embryonic mesoderm. Despite the development of combined modalities including radiotherapy, STSs are often refractory to antitumor modalities, and novel strategies that improve the prognosis of STS patients are needed. We previously demonstrated the therapeutic potential of two telomerase-specific replication-competent oncolytic adenoviruses, OBP-301 and tumor suppressor p53-armed OBP-702, in human STS cells. Here, we demonstrate in vitro and in vivo antitumor effects of OBP-702 in combination with ionizing radiation against human STS cells (HT1080, NMS-2, SYO-1). OBP-702 synergistically promoted the antitumor effect of ionizing radiation in the STS cells by suppressing the expression of B-cell lymphoma-X large (BCL-xL) and enhancing ionizing radiation-induced apoptosis. The in vivo experiments demonstrated that this combination therapy significantly suppressed STS tumors’ growth. Our results suggest that OBP-702 is a promising antitumor reagent for promoting the radiosensitivity of STS tumors
Oncolytic virotherapy promotes radiosensitivity in soft tissue sarcoma by suppressing anti-apoptotic MCL1 expression
Soft tissue sarcoma (STS) is a rare cancer that develops from soft tissues in any part of the body. Despite major advances in the treatment of STS, patients are often refractory to conventional radiotherapy, leading to poor prognosis. Enhancement of sensitivity to radiotherapy would therefore improve the clinical outcome of STS patients. We previously revealed that the tumor-specific, replication-competent oncolytic adenovirus OBP-301 kills human sarcoma cells. In this study, we investigated the radiosensitizing effect of OBP-301 in human STS cells. The in vitro antitumor effect of OBP-301 and ionizing radiation in monotherapy or combination therapy was assessed using highly radiosensitive (RD-ES and SK-ES-1) and moderately radiosensitive (HT1080 and NMS-2) STS cell lines. The expression of markers for apoptosis and DNA damage were evaluated in STS cells after treatment. The therapeutic potential of combination therapy was further analyzed using SK-ES-1 and HT1080 cells in subcutaneous xenograft tumor models. The combination of OBP-301 and ionizing radiation showed a synergistic antitumor effect in all human STS cell lines tested, including those that show different radiosensitivity. OBP-301 was found to enhance irradiation-induced apoptosis and DNA damage via suppression of anti-apoptotic myeloid cell leukemia 1 (MCL1), which was expressed at higher levels in moderately radiosensitive cell lines. The combination of OBP-301 and ionizing radiation showed a more profound antitumor effect compared to monotherapy in SK-ES-1 (highly radiosensitive) and HT1080 (moderately radiosensitive) subcutaneous xenograft tumors. OBP-301 is a promising antitumor reagent to improve the therapeutic potential of radiotherapy by increasing radiation-induced apoptosis in STS
Early chondral damage following meniscus repairs with anterior cruciate ligament reconstruction
Background
Meniscal tears are commonly observed in patients with anterior cruciate ligament (ACL) injuries. Meniscal repair has become a common procedure for the injured meniscus, and good clinical outcomes have been reported in such cases when used concurrently with ACL reconstruction. However, it is unclear whether early chondral damage progression can be prevented following meniscal repair with ACL reconstruction, as meniscal damage is a potential risk factor for the development of osteoarthritis. The purpose of this study was to evaluate the zone-specific chondral damage that occurs after arthroscopic meniscal repair with concomitant ACL reconstruction. Our hypothesis was that meniscal repair with ACL reconstruction would not decrease the rate of progression of chondral damage compared to that observed in isolated ACL reconstruction with intact menisci.
Methods
This study included 40 patients who underwent anatomic double-bundle ACL reconstruction. We divided the patients into the following two groups: Group A with an intact meniscus (20 knees) and Group M requiring meniscal repair (20 knees). Chondral damage was evaluated arthroscopically in six compartments and 40 sub-compartments, and these features were graded using the International Cartilage Repair Society lesion classification. The cartilage damage in each sub-compartment and compartment was compared between the two groups both at reconstruction and at second-look arthroscopy (average 16 months postoperatively). At the latest follow-up examination (average 37 months postoperatively), the International Knee Documentation Committee (IKDC) score was compared between the two groups.
Results
Group M had a significantly worse cartilage status than Group A in five sub-compartments (mainly in the medial compartment) at reconstruction and in nine sub-compartments (mainly in the bilateral compartments) at second-look arthroscopy. The mean IKDC score was better in Group A than in Group M (Group A; 90 vs. Group M; 86). The overall success rate of meniscal repairs was 92% (23 of 25 menisci) at second-look arthroscopy.
Conclusion
The progression of post-traumatic chondral damage may occur at a faster rate in patients who require ACL reconstruction and meniscal repair than in patients with intact menisci
Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma
Immune checkpoint inhibitors including anti-programmed cell death 1 (PD-1) antibody have recently improved clinical outcome in certain cancer patients; however, osteosarcoma (OS) patients are refractory to PD-1 blockade. Oncolytic virotherapy has emerged as novel immunogenic therapy to augment antitumor immune response. We developed a telomerase-specific replication-competent oncolytic adenovirus OBP-502 that induces lytic cell death via binding to integrins. In this study, we assessed the combined effect of PD-1 blockade and OBP-502 in OS cells. The expression of coxsackie and adenovirus receptor (CAR), integrins αvβ3 and αvβ5, and programmed cell death ligand 1 (PD-L1) was analyzed in two murine OS cells (K7M2, NHOS). The cytopathic activity of OBP-502 in both cells was analyzed using the XTT assay. OBP-502-induced immunogenic cell death was assessed by analyzing the level of extracellular ATP and high-mobility group box protein B1 (HMGB1). Subcutaneous tumor models for K7M2 and NHOS cells were used to evaluate the antitumor effect and number of tumor-infiltrating CD8+ cells in combination therapy. K7M2 and NHOS cells showed high expression of integrins αvβ3 and αvβ5, but not CAR. OBP-502 significantly suppressed the viability of both cells, in which PD-L1 expression and the release of ATP and HMGB1 were significantly increased. Intratumoral injection of OBP-502 significantly augmented the efficacy of PD-1 blockade on subcutaneous K2M2 and NHOS tumor models via enhancement of tumor-infiltrating CD8+ T cells. Our results suggest that telomerase-specific oncolytic virotherapy is a promising antitumor strategy to promote the efficacy of PD-1 blockade in OS