3,560 research outputs found

    Determination of absorption length of CO2 and high power diode laser radiation for ordinary Portland cement and its influence on the depth of melting

    Get PDF
    The laser beam absorption lengths of CO2 and a high power diode laser (HPDL) radiation for concrete have been determined. By employing Beer-Lambert’s law the absorption lengths for concrete of CO2 and a HPDL radiation were 47022 m and 17715 m respectively. Indeed, this was borne out somewhat from a cross-sectional analysis of the melt region produced by both lasers which showed melting occurred to a greater depth when the CO2 laser was used

    On the Density of Coprime m-tuples over Holomorphy Rings

    Full text link
    Let Fq\mathbb F_q be a finite field, F/FqF/\mathbb F_q be a function field of genus gg having full constant field Fq\mathbb F_q, S\mathcal S a set of places of FF and HH the holomorphy ring of S\mathcal S. In this paper we compute the density of coprime mm-tuples of elements of HH. As a side result, we obtain that whenever the complement of S\mathcal S is finite, the computation of the density can be reduced to the computation of the LL-polynomial of the function field. In the rational function field case, classical results for the density of coprime mm-tuples of polynomials are obtained as corollaries.Comment: To appear in International Journal of Number Theor

    The influence of shield gases on the surface condition of laser treated concrete

    Get PDF
    This work aims to elucidate the effects of using O2, Ar and He shield gasses during the treatment of the ordinary Portland cement (OPC) surface of concrete with a high power diode laser (HPDL). The findings showed a marked difference existed in the surface condition of the concrete after HPDL treatment depending on the shield gas used. The use of O2 as the shield gas was seen to result in glazes with far fewer microcracks and porosities than those generated with either Ar or He shield gases. Such differences were found to be due to the smaller O2 gas molecules dissolving molecularly into the open structure of the HPDL generated glaze on the OPC surface of concrete and react with the glass network to increase the fluidity of the melt. This in turn was also seen to affect the cooling rate and therefore the tendency to generate microcracks

    The wear characteristics of a high power diode laser generated glaze on the ordinary Portland cement surface of concrete

    Get PDF
    The ordinary Portland cement (OPC) surface layer of concrete, which was glazed using a high power diode laser (HPDL), has been tested in order to determine the wear characteristics of the glaze. The work showed that the generation of a surface glaze resulted in the considerable enhancement of the wear characteristics over an untreated OPC surface of concrete. Within both normal and corrosive (detergent, NaOH and HNO3) environmental conditions the wear rate of the HPDL generated glaze was 3.5 mg.cm-2.h-1. In contrast, the untreated OPC surface of concrete exhibited a wear rate of 9.8 - 114.8 mg.cm-2.h-1 when exposed to the various reagents. Life assessment testing revealed that the laser glazed OPC surfaces effected an increase in actual wear life of 1.3 to 17.7 times over the untreated OPC surface of concrete, depending upon the corrosive environment. The reasons for these marked improvements in the wear resistance and wear life of the HPDL generated glaze over the untreated OPC surface of concrete can be attributed to firstly, the vitrification of the OPC surface after HPDL treatment which subsequently created a much more dense and consolidated surface, and secondly, the generation of a surface with improved microstructure and phase which is more resistant in corrosive environments

    A comparative analysis of the wear characteristics of glazes generated on the ordinary Portland cement surface of concrete by means of CO2 and high power diode laser radiation

    Get PDF
    The wear characteristics of a glaze generated on the ordinary Portland cement (OPC) surface of concrete using a 2 kW high power diode laser (HPDL) and a 3 kW CO2 laser have been determined. Within both normal and corrosive environmental conditions, the wear rate of the CO2 and HPDL generated glazes were consistently higher than the untreated OPC surface of concrete. Life assessment testing revealed that surface glazing of the OPC with both the CO2 and the HPDL effected an increase in wear life of 1.3 to 17.7 times over an untreated OPC surface, depending upon the corrosive environment. The reasons for these marked improvements in the wear resistance and wear life of the CO2 and HPDL generated glazes over the untreated OPC surface of concrete can be attributed to the partial (CO2 laser) and full (HPDL) vitrification of the OPC surface after laser treatment which subsequently created a much more dense and consolidated surface with improved microstructure and phase characteristics which is more resistant in corrosive environments. In addition, the wear life and the wear rate of the HPDL glaze was found to be consistently higher than that of the CO2 laser glaze. This is due to the fact that CO2 and HPDLs have very different wavelengths; consequently, differences exist between the CO2 and HPDL beam absorption characteristics of the OPC. Such differences give rise to different cooling rates, solidification speeds, etc and are, therefore, the cause of the distinct glaze characteristics which furnishing each microstructure with its own unique wear resistance characteristics

    Diffusion in the Markovian limit of the spatio-temporal colored noise

    Full text link
    We explore the diffusion process in the non-Markovian spatio-temporal noise.%the escape rate problem in the non-Markovian spatio-temporal random noise. There is a non-trivial short memory regime, i.e., the Markovian limit characterized by a scaling relation between the spatial and temporal correlation lengths. In this regime, a Fokker-Planck equation is derived by expanding the trajectory around the systematic motion and the non-Markovian nature amounts to the systematic reduction of the potential. For a system with the potential barrier, this fact leads to the renormalization of both the barrier height and collisional prefactor in the Kramers escape rate, with the resultant rate showing a maximum at some scaling limit.Comment: 4pages,2figure

    Detection of Macroscopic Entanglement by Correlation of Local Observables

    Full text link
    We propose a correlation of local observables on many sites in macroscopic quantum systems. By measuring the correlation one can detect, if any, superposition of macroscopically distinct states, which we call macroscopic entanglement, in arbitrary quantum states that are (effectively) homogeneous. Using this property, we also propose an index of macroscopic entanglement.Comment: Although the index q was proposed for mixed states, it is also applicable to pure states, on which we fix minor bugs (that will be reported in PRL as erratum). The conclusions of the paper remain unchanged. (4 pages, no figures.

    Macroscopic entanglement of many-magnon states

    Full text link
    We study macroscopic entanglement of various pure states of a one-dimensional N-spin system with N>>1. Here, a quantum state is said to be macroscopically entangled if it is a superposition of macroscopically distinct states. To judge whether such superposition is hidden in a general state, we use an essentially unique index p: A pure state is macroscopically entangled if p=2, whereas it may be entangled but not macroscopically if p<2. This index is directly related to the stability of the state. We calculate the index p for various states in which magnons are excited with various densities and wavenumbers. We find macroscopically entangled states (p=2) as well as states with p=1. The former states are unstable in the sense that they are unstable against some local measurements. On the other hand, the latter states are stable in the senses that they are stable against local measurements and that their decoherence rates never exceed O(N) in any weak classical noises. For comparison, we also calculate the von Neumann entropy S(N) of a subsystem composed of N/2 spins as a measure of bipartite entanglement. We find that S(N) of some states with p=1 is of the same order of magnitude as the maximum value N/2. On the other hand, S(N) of the macroscopically entangled states with p=2 is as small as O(log N)<< N/2. Therefore, larger S(N) does not mean more instability. We also point out that these results are analogous to those for interacting many bosons. Furthermore, the origin of the huge entanglement, as measured either by p or S(N), is discussed to be due to the spatial propagation of magnons.Comment: 30 pages, 5 figures. The manuscript has been shortened and typos have been fixed. Data points of figures have been made larger in order to make them clearly visibl

    Surface glazing of concrete using a 2.5 kW high power diode laser and the effects of large beam geometry

    Get PDF
    Interaction of a 2.5 kW high power diode laser (HPDL) beam with the ordinary Portland cement (OPC) surface of concrete has been investigated, resulting in the generation of a tough, inexpensive amorphous glaze. Life assessment testing revealed that the OPC glaze had an increase in wear life of 1.3 to 14.8 times over an untreated OPC surface, depending upon the corrosive environment. Also, variations in the width of the HPDL beam were seen to have a considerable affect on the melt depth. Furthermore, the maximum coverage rate that it may be possible to achieve using the HPDL was calculated as being 1.94 m2/h. It is a distinct possibility that the economic and material benefits to be gained from the deployment of such an effective and efficient large area coating on OPC could be significant
    • …
    corecore