15 research outputs found

    Evaluating the Rationale Understanding of Critical Reasoning in Logical Reading Comprehension

    Full text link
    To precisely evaluate a language model's capability for logical reading comprehension, we present a dataset for testing the understanding of the rationale behind critical reasoning. For questions taken from an existing multiplechoice logical reading comprehension dataset, we crowdsource rationale texts that explain why we should select or eliminate answer options, resulting in 3,003 multiple-choice subquestions that are associated with 943 main questions. Experiments on our dataset show that recent large language models (e.g., InstructGPT) struggle to answer the subquestions even if they are able to answer the main questions correctly. We find that the models perform particularly poorly in answering subquestions written for the incorrect options of the main questions, implying that the models have a limited capability for explaining why incorrect alternatives should be eliminated. These results suggest that our dataset encourages further investigation into the critical reasoning ability of language models while focusing on the elimination process of relevant alternatives.Comment: Accepted to EMNLP 202

    Possible Stories: Evaluating Situated Commonsense Reasoning under Multiple Possible Scenarios

    Full text link
    The possible consequences for the same context may vary depending on the situation we refer to. However, current studies in natural language processing do not focus on situated commonsense reasoning under multiple possible scenarios. This study frames this task by asking multiple questions with the same set of possible endings as candidate answers, given a short story text. Our resulting dataset, Possible Stories, consists of more than 4.5K questions over 1.3K story texts in English. We discover that even current strong pretrained language models struggle to answer the questions consistently, highlighting that the highest accuracy in an unsupervised setting (60.2%) is far behind human accuracy (92.5%). Through a comparison with existing datasets, we observe that the questions in our dataset contain minimal annotation artifacts in the answer options. In addition, our dataset includes examples that require counterfactual reasoning, as well as those requiring readers' reactions and fictional information, suggesting that our dataset can serve as a challenging testbed for future studies on situated commonsense reasoning.Comment: Accepted to COLING 202

    On Degrees of Freedom in Defining and Testing Natural Language Understanding

    Full text link
    Natural language understanding (NLU) studies often exaggerate or underestimate the capabilities of systems, thereby limiting the reproducibility of their findings. These erroneous evaluations can be attributed to the difficulty of defining and testing NLU adequately. In this position paper, we reconsider this challenge by identifying two types of researcher degrees of freedom. We revisit Turing's original interpretation of the Turing test and indicate that an NLU test does not provide an operational definition; it merely provides inductive evidence that the test subject understands the language sufficiently well to meet stakeholder objectives. In other words, stakeholders are free to arbitrarily define NLU through their objectives. To use the test results as inductive evidence, stakeholders must carefully assess if the interpretation of test scores is valid or not. However, designing and using NLU tests involve other degrees of freedom, such as specifying target skills and defining evaluation metrics. As a result, achieving consensus among stakeholders becomes difficult. To resolve this issue, we propose a validity argument, which is a framework comprising a series of validation criteria across test components. By demonstrating that current practices in NLU studies can be associated with those criteria and organizing them into a comprehensive checklist, we prove that the validity argument can serve as a coherent guideline for designing credible test sets and facilitating scientific communication.Comment: Accepted to Findings of ACL 202

    Probing Physical Reasoning with Counter-Commonsense Context

    Full text link
    In this study, we create a CConS (Counter-commonsense Contextual Size comparison) dataset to investigate how physical commonsense affects the contextualized size comparison task; the proposed dataset consists of both contexts that fit physical commonsense and those that do not. This dataset tests the ability of language models to predict the size relationship between objects under various contexts generated from our curated noun list and templates. We measure the ability of several masked language models and generative models. The results show that while large language models can use prepositions such as ``in'' and ``into'' in the provided context to infer size relationships, they fail to use verbs and thus make incorrect judgments led by their prior physical commonsense.Comment: Accepted to ACL 2023(Short Paper

    Assessing the Benchmarking Capacity of Machine Reading Comprehension Datasets

    Get PDF
    Existing analysis work in machine reading comprehension (MRC) is largely concerned with evaluating the capabilities of systems. However, the capabilities of datasets are not assessed for benchmarking language understanding precisely. We propose a semi-automated, ablation-based methodology for this challenge; By checking whether questions can be solved even after removing features associated with a skill requisite for language understanding, we evaluate to what degree the questions do not require the skill. Experiments on 10 datasets (e.g., CoQA, SQuAD v2.0, and RACE) with a strong baseline model show that, for example, the relative scores of a baseline model provided with content words only and with shuffled sentence words in the context are on average 89.2% and 78.5% of the original score, respectively. These results suggest that most of the questions already answered correctly by the model do not necessarily require grammatical and complex reasoning. For precise benchmarking, MRC datasets will need to take extra care in their design to ensure that questions can correctly evaluate the intended skills.Comment: 11 pages, AAAI2020, with extra examples, data: https://github.com/Alab-NII/mrc-ablatio

    A Survey on Measuring and Mitigating Reasoning Shortcuts in Machine Reading Comprehension

    Full text link
    The issue of shortcut learning is widely known in NLP and has been an important research focus in recent years. Unintended correlations in the data enable models to easily solve tasks that were meant to exhibit advanced language understanding and reasoning capabilities. In this survey paper, we focus on the field of machine reading comprehension (MRC), an important task for showcasing high-level language understanding that also suffers from a range of shortcuts. We summarize the available techniques for measuring and mitigating shortcuts and conclude with suggestions for further progress in shortcut research. Importantly, we highlight two concerns for shortcut mitigation in MRC: (1) the lack of public challenge sets, a necessary component for effective and reusable evaluation, and (2) the lack of certain mitigation techniques that are prominent in other areas.Comment: 18 pages, 2 figures, 4 table

    Benchmarking Machine Reading Comprehension: A Psychological Perspective

    Get PDF
    Machine reading comprehension (MRC) has received considerable attention as a benchmark for natural language understanding. However, the conventional task design of MRC lacks explainability beyond the model interpretation, i.e., reading comprehension by a model cannot be explained in human terms. To this end, this position paper provides a theoretical basis for the design of MRC datasets based on psychology as well as psychometrics, and summarizes it in terms of the prerequisites for benchmarking MRC. We conclude that future datasets should (i) evaluate the capability of the model for constructing a coherent and grounded representation to understand context-dependent situations and (ii) ensure substantive validity by shortcut-proof questions and explanation as a part of the task design.Comment: 21 pages, EACL 202
    corecore