452 research outputs found

    Self-Adjusting Biofeedback with a Dynamic Feedback Signal Set (DyFSS)

    Get PDF
    Abstract - A lack of control over their autonomic nervous system presents a major challenge for many children with Autism Spectrum Disorder (ASD). Autonomic biofeedback training is a promising treatment for managing anxiety and ASD symptoms more generally. We describe software that tunes four autonomic measurements to the best abilities and needs of each individual patient. Using this dynamic feedback signal set (DyFSS), a strength-based, self-customizing algorithm, we aim to address the autonomic heterogeneity of youth with ASD. The DyFSS may improve autonomic biofeedback training for the user by making it more understandable and easier to accomplish. Because it is self-adjusting, it may also ease the integration of autonomic biofeedback training into clinical work. Initial feasibility testing of this algorithm in youth with ASD with a five-session autonomic biofeedback training protocol showed improved behavior in relation to ASD symptoms Initial reactions show that youth with ASD are readily engaged through technological interventions such as autonomic biofeedback

    Duhamel versus transanal endorectal pull through (TERPT) for the surgical treatment of Hirschsprung’s disease

    Get PDF
    For the surgical treatment of Hirschsprung’s disease, several surgical techniques are used to resect the distal aganglionic colon. Two frequently used techniques are the Duhamel procedure and the transanal endorectal pull-through procedure. During the ‘8th Pediatric Colorectal Course’ in Nijmegen, November 2015, a workshop was organized to share experiences of both techniques by several experts in the field and to discuss (long term) outcomes. Specifically, the objective of the meeting was to discuss the main controversies in relation to the technical execution of both procedures in order to make an initial assessment of the limitations of available evidence for clinical decision-making and to formulate a set of preliminary recommendations for current clinical care and future research

    Improving the Graphical User Interface (GUI) for the Dynamic Feedback Signal Set (DyFSS): Increasing Accessibility for the Neurodiverse

    Get PDF
    Peripheral biofeedback is an explicit learning tool that allows for real-time evaluation and control of physiological proxies by means of computerized signals. Its integration into health practice allows users to calibrate self-awareness and self regulation then apply these skills to everyday life. People with neurodevelopmental differences encounter limitations when using commercially available clinical biofeedback due to variation in their autonomic response. Principles of Universal Design dictate that biofeedback inputs and displays allow effective access and benefit for as many individuals as possible. Our Dynamic Feedback Signal Set (DyFSS, nonprovisional patent-in-process) algorithm adjusts signal processing by dynamically weighting feedback signals to the best abilities of the user, increasing the efficacy of biofeedback for the neurodiverse. The software includes an interactive graphical tutorial and quiz, a variety of graphical user interfaces to honor individual preferences and abilities, and a game that can be played by blind and hard of hearing individuals alike

    Self-Adjusting Biofeedback with a Dynamic Feedback Signal Set (DyFSS)

    Get PDF
    A lack of control over their autonomic nervous system presents a major challenge for many children with Autism Spectrum Disorder (ASD). Autonomic biofeedback training is a promising treatment for managing anxiety and ASD symptoms more generally. We describe software that tunes four autonomic measurements to the best abilities and needs of each individual patient. Using this dynamic feedback signal set (DyFSS), a strength-based, self-customizing algorithm, we aim to address the autonomic heterogeneity of youth with ASD. The DyFSS may improve autonomic biofeedback training for the user by making it more understandable and easier to accomplish. Because it is self-adjusting, it may also ease the integration of autonomic biofeedback training into clinical work. Initial feasibility testing of this algorithm in youth with ASD with a five-session autonomic biofeedback training protocol showed improved behavior in relation to ASD symptoms Initial reactions show that youth with ASD are readily engaged through technological interventions such as autonomic biofeedback. Keywords— autism spectrum disorder; autonomi

    Recoil Studies in the Reaction of 12-C Ions with the Enriched Isotope 118-Sn

    Full text link
    The recoil properties of the product nuclei from the interaction of 2.2 GeV/nucleon 12-C ions from Nuclotron of the Laboratory of High Energies (LHE), Joint Institute for Nuclear Research (JINR) at Dubna with a 118-Sn target have been studied using catcher foils. The experimental data were analyzed using the mathematical formalism of the standard two-step vector model. The results for 12-C ions are compared with those for deuterons and protons. Three different Los Alamos versions of the Quark-Gluon String Model (LAQGSM) were used for comparison with our experimental data.Comment: 10 pages, 6 figures, submitted to Nucl. Phys.

    RBCK1‐related disease: A rare multisystem disorder with polyglucosan storage, auto‐inflammation, recurrent infections, skeletal, and cardiac myopathy—Four additional patients and a review of the current literature

    Get PDF
    In this article, we report four new patients, from three kindreds, with pathogenic variants in RBCK1 and a multisystem disorder characterised by widespread polyglucosan storage. We describe the clinical presentation of progressive skeletal and cardiac myopathy, combined immunodeficiencies and auto‐inflammation, illustrate in detail the histopathological findings in multiple tissue types, and report muscle MRI findings

    A longitudinal examination of plasma neurofilament light and total tau for the clinical detection and monitoring of Alzheimer's disease

    Get PDF
    We examined baseline and longitudinal associations between plasma neurofilament light (NfL) and total tau (t-tau), and the clinical presentation of Alzheimer's disease (AD). A total of 579 participants (238, normal cognition [NC]; 185, mild cognitive impairment [MCI]; 156, AD dementia) had baseline blood draws; 82% had follow-up evaluations. Plasma samples were analyzed for NfL and t-tau using Simoa technology. Baseline plasma NfL was higher in AD dementia than MCI (standardized mean difference = 0.55, 95% CI: 0.37–0.73) and NC (standardized mean difference = 0.68, 95% CI: 0.49–0.88), corresponded to Clinical Dementia Rating scores (OR = 1.94, 95% CI: 1.35–2.79]), and correlated with all neuropsychological tests (r's = 0.13–0.42). Longitudinally, NfL did not predict diagnostic conversion but predicted decline on 3/10 neuropsychological tests. Baseline plasma t-tau was higher in AD dementia than NC with a small effect (standardized mean difference = 0.33, 95% CI: 0.10–0.57) but not MCI. t-tau did not statistically significant predict any longitudinal outcomes. Plasma NfL may be useful for the detection of AD dementia and monitoring of disease progression. In contrast, there was minimal evidence in support of plasma t-tau
    • …
    corecore