1,509 research outputs found
Galactic Wind in the Nearby Starburst Galaxy NGC 253 Observed with the Kyoto3DII Fabry-Perot Mode
We have observed the central region of the nearby starburst galaxy NGC 253
with the Kyoto Tridimensional Spectrograph II (Kyoto3DII) Fabry-Perot mode in
order to investigate the properties of its galactic wind. Since this galaxy has
a large inclination, it is easy to observe its galactic wind. We produced the
Ha, [N II]6583, and [S II]6716,6731 images, as well as those line ratio maps.
The [N II]/Ha ratio in the galactic wind region is larger than those in H II
regions in the galactic disk. The [N II]/Ha ratio in the southeastern filament,
a part of the galactic wind, is the largest and reaches about 1.5. These large
[N II]/Ha ratios are explained by shock ionization/excitation. Using the [S
II]/Ha ratio map, we spatially separate the galactic wind region from the
starburst region. The kinetic energy of the galactic wind can be sufficiently
supplied by supernovae in a starburst region in the galactic center. The shape
of the galactic wind and the line ratio maps are non-axisymmetric about the
galactic minor axis, which is also seen in M82. In the [N II]6583/[S
II]6716,6731 map, the positions with large ratios coincide with the positions
of star clusters found in the Hubble Space Telescope (HST) observation. This
means that intense star formation causes strong nitrogen enrichment in these
regions. Our unique data of the line ratio maps including [S II] lines have
demonstrated their effectiveness for clearly distinguishing between shocked gas
regions and starburst regions, determining the extent of galactic wind and its
mass and kinetic energy, and discovering regions with enhanced nitrogen
abundance.Comment: 22 pages, 5 figures, 1 table, accepted for publication in Ap
Electron Correlation Driven Heavy-Fermion Formation in LiV2O4
Optical reflectivity measurements were performed on a single crystal of the
d-electron heavy-fermion (HF) metal LiV2O4. The results evidence the highly
incoherent character of the charge dynamics for all temperatures above T^*
\approx 20 K. The spectral weight of the optical conductivity is redistributed
over extremely broad energy scales (~ 5 eV) as the quantum coherence of the
charge carriers is recovered. This wide redistribution is, in sharp contrast to
f-electron Kondo lattice HF systems, characteristic of a metallic system close
to a correlation driven insulating state. Our results thus reveal that strong
electronic correlation effects dominate the low-energy charge dynamics and
heavy quasiparticle formation in LiV2O4. We propose the geometrical
frustration, which limits the extension of charge and spin ordering, as an
additional key ingredient of the low-temperature heavy-fermion formation in
this system.Comment: 5 pages, 3 figure
Controlled vaporization of the superconducting condensate in cuprate superconductors sheds light on the pairing boson
We use ultrashort intense laser pulses to study superconducting state
vaporization dynamics in La(2-x)Sr(x)CuO4 (x=0.1 and 0.15) on the femtosecond
timescale. We find that the energy density required to vaporize the
superconducting state is 2+- 0.8 K/Cu and 2.6 +- 1 K/Cu for x=0.1 and 0.15
respectively. This is significantly greater than the condensation energy
density, indicating that the quasiparticles share a large amount of energy with
the boson glue bath on this timescale. Considering in detail both spin and
lattice energy relaxation pathways which take place on the relevant timescale
of picoseconds, we rule out purely spin-mediated pair-breaking in favor of
phonon-mediated mechanisms, effectively ruling out spin-mediated pairing in
cuprates as a consequence.Comment: 5 pages of article plus 4 pages of supplementary materia
High-Tc superconductivity in entirely end-bonded multi-walled carbon nanotubes
We report that entirely end-bonded multi-walled carbon nanotubes (MWNTs) can
show superconductivity with the transition temperature Tc as high as 12K that
is approximately 40-times larger than those reported in ropes of single-walled
nanotubes. We find that emergence of this superconductivity is very sensitive
to junction structures of Au electrode/MWNTs. This reveals that only MWNTs with
optimal numbers of electrically activated shells, which are realized by the
end-bonding, can allow the superconductivity due to inter shell effects.Comment: 5 page
Ionization Source of a Minor-axis Cloud in the Outer Halo of M82
The M82 `cap' is a gas cloud at a projected radius of 11.6 kpc along the
minor axis of this well known superwind source. The cap has been detected in
optical line emission and X-ray emission and therefore provides an important
probe of the wind energetics. In order to investigate the ionization source of
the cap, we observed it with the Kyoto3DII Fabry-Perot instrument mounted on
the Subaru Telescope. Deep continuum, Ha, [NII]6583/Ha, and [SII]6716,6731/Ha
maps were obtained with sub-arcsecond resolution. The superior spatial
resolution compared to earlier studies reveals a number of bright Ha emitting
clouds within the cap. The emission line widths (< 100 km s^-1 FWHM) and line
ratios in the newly identified knots are most reasonably explained by slow to
moderate shocks velocities (v_shock = 40--80 km s^-1) driven by a fast wind
into dense clouds. The momentum input from the M82 nuclear starburst region is
enough to produce the observed shock. Consequently, earlier claims of
photoionization by the central starburst are ruled out because they cannot
explain the observed fluxes of the densest knots unless the UV escape fraction
is very high (f_esc > 60%), i.e., an order of magnitude higher than observed in
dwarf galaxies to date. Using these results, we discuss the evolutionary
history of the M82 superwind. Future UV/X-ray surveys are expected to confirm
that the temperature of the gas is consistent with our moderate shock model.Comment: 7 pages, 5 figures, 2 tables; Accepted for publication in Ap
- …