24 research outputs found
Autocrine/paracrine role of adrenomedullin in cultured endothelial and mesangial cells
Autocrine/paracrine role of adrenomedullin in cultured endothelial and mesangial cells. Adrenomedullin (AM), a potent vasorelaxant and natriuretic peptide isolated from human pheochromocytoma, is present in the kidney and secreted from endothelial cells (EC) and vascular smooth muscle cells (VSMC), but the functional role of AM is still unclear. To clarify the significance of AM as a local regulator, we investigated its secretion and action in cultured cells, and examined the effects of neutralization using a specific monoclonal antibody against AM. The prepared antibody directed against the ring structure showed a high affinity for human and rat AM. Using radioimmunoassay with this antibody, we found significant secretion from cultured rat mesangial cells (MC) of a 6-kDa mature form of AM as seen from EC and VSMC. The addition of AM into cultured cells dose-dependently increased cAMP production and potently inhibited PDGF-stimulated thymidine incorporation. Pretreatment with the monoclonal antibody completely abolished cAMP increase induced by exogenous AM. Moreover, antibody neutralization of endogenously secreted AM in cultured EC, but not in MC or VSMC, markedly (by ∼70%) reduced basal cAMP production and significantly (1.7-fold) enhanced DNA synthesis. These results indicate that AM, acting as an autocrine/paracrine regulator, exerts an antiproliferative action on EC and MC, and suggest its role as a local modulator of endothelial and mesangial function
Evaluation of Transcatheter Arterial Chemoembolization for Unresectable Hepatocellular Carcinoma
The long-term results of transcatheter arterial chemoembolization (LP-TAE) for unresectable hepatocellular carcinoma (HCC) were evaluated in comparison with that of transcatheter arterial chemoinfusion (LP-TAI) and systemic chemotherapy. The cumulative survival rate in 29 patients who received LP-TAE at one-year, two-years and three-years were 70.9%, 54.0% and 25.2%, respectively. In contrast, the cumulative survival rate at one-year in patients who received LP-TAI was 20.6% and those who received systemic chemotherapy was 5.6%. The cumulative survival rate for LP-TAE was significantly higher than those for LP-TAI and systemic chemotherapy (p<0.001). The factor that affected the survival rate for LP-TAE was the size of the tumor. Patients with HCC of less than 5cm in diameter lived significantly longer than those with HCC of more than 5cm in diameter (p<0.05)
Autocrine/paracrine role of adrenomedullin in cultured endothelial and mesangial cells
Autocrine/paracrine role of adrenomedullin in cultured endothelial and mesangial cells. Adrenomedullin (AM), a potent vasorelaxant and natriuretic peptide isolated from human pheochromocytoma, is present in the kidney and secreted from endothelial cells (EC) and vascular smooth muscle cells (VSMC), but the functional role of AM is still unclear. To clarify the significance of AM as a local regulator, we investigated its secretion and action in cultured cells, and examined the effects of neutralization using a specific monoclonal antibody against AM. The prepared antibody directed against the ring structure showed a high affinity for human and rat AM. Using radioimmunoassay with this antibody, we found significant secretion from cultured rat mesangial cells (MC) of a 6-kDa mature form of AM as seen from EC and VSMC. The addition of AM into cultured cells dose-dependently increased cAMP production and potently inhibited PDGF-stimulated thymidine incorporation. Pretreatment with the monoclonal antibody completely abolished cAMP increase induced by exogenous AM. Moreover, antibody neutralization of endogenously secreted AM in cultured EC, but not in MC or VSMC, markedly (by ∼70%) reduced basal cAMP production and significantly (1.7-fold) enhanced DNA synthesis. These results indicate that AM, acting as an autocrine/paracrine regulator, exerts an antiproliferative action on EC and MC, and suggest its role as a local modulator of endothelial and mesangial function
Itinerant U 5f band states in the layered compound UFeGa5 observed by soft X-ray angle-resolved photoemission spectroscopy
We have performed angle-resolved photoemission spectroscopy (ARPES)
experiments on paramagnetic UFeGa5 using soft X-ray synchrotron radiation
(hn=500eV) and derived the bulk- and U 5f-sensitive electronic structure of
UFeGa5. Although the agreement between the experimental band structure and the
LDA calculation treating U 5f electrons as being itinerant is qualitative, the
morphology of the Fermi surface is well explained by the calculation,
suggesting that the U 5f states can be essentially understood within the
itinerant-electron model.Comment: 13 pages, 4 figur
Vascular endothelial growth factor (VEGF121) protects rats from renal infarction in thrombotic microangiopathy
Vascular endothelial growth factor (VEGF121) protects rats from renal infarction in thrombotic microangiopathy.BackgroundRenal thrombotic microangiopathy, typified by the hemolytic uremic syndrome, is associated with endothelial cell injury in which the presence of cortical necrosis, extensive glomerular involvement, and arterial occlusive lesions correlates with a poor clinical outcome. We hypothesized that the endothelial survival factor vascular endothelial growth factor (VEGF) may provide protection.MethodSevere, necrotizing, thrombotic microangiopathy was induced in rats by the renal artery perfusion of antiglomerular endothelial antibody, followed by the administration of VEGF or vehicle, and renal injury was evaluated.ResultsControl rats developed severe glomerular and tubulointerstitial injury with extensive renal necrosis. The administration of VEGF significantly reduced the necrosis, preserved the glomerular endothelium and arterioles, and reduced the number of apoptotic cells in glomeruli (at 4 hours) and in the tubulointerstitium (at 4 days). The prosurvival effect of VEGF for endothelium may relate in part to the ability of VEGF to protect endothelial cells from factor-induced apoptosis, as demonstrated for tumor necrosis factor-α (TNF-α), which was shown to be up-regulated through the course of this model of renal microangiopathy. Endothelial nitric oxide synthase expression was preserved in VEGF-treated rats compared with its marked decrease in the surviving glomeruli and interstitium of the antibody-treated rats that did not receive VEGF.ConclusionsVEGF protects against renal necrosis in this model of thrombotic microangiopathy. This protection may be mediated by maintaining endothelial nitric oxide production and/or preventing endothelial cell death
Cytoplasmic control of Rab family small GTPases through BAG6
Rab family small GTPases are master regulators of distinct steps of intracellular vesicle trafficking in eukaryotic cells. GDP‐bound cytoplasmic forms of Rab proteins are prone to aggregation due to the exposure of hydrophobic groups but the machinery that determines the fate of Rab species in the cytosol has not been elucidated in detail. In this study, we find that BAG6 (BAT3/Scythe) predominantly recognizes a cryptic portion of GDP‐associated Rab8a, while its major GTP‐bound active form is not recognized. The hydrophobic residues of the Switch I region of Rab8a are essential for its interaction with BAG6 and the degradation of GDP‐Rab8a via the ubiquitin‐proteasome system. BAG6 prevents the excess accumulation of inactive Rab8a, whose accumulation impairs intracellular membrane trafficking. BAG6 binds not only Rab8a but also a functionally distinct set of Rab family proteins, and is also required for the correct distribution of Golgi and endosomal markers. From these observations, we suggest that Rab proteins represent a novel set of substrates for BAG6, and the BAG6‐mediated pathway is associated with the regulation of membrane vesicle trafficking events in mammalian cells
Regioselective glucosidation of trans-resveratrol in Escherichia coli expressing glucosyltransferase from Phytolacca americana
A glucosyltransferase (GT) of Phytolacca americana (PaGT3) was expressed in Escherichia coli and purified for the synthesis of two O-β-glucoside products of trans-resveratrol. The reaction was moderately regioselective with a ratio of 4′-O-β-glucoside: 3-O-β-glucoside at 10:3. We used not only the purified enzyme but also the E. coli cells containing the PaGT3 gene for the synthesis of glycoconjugates. E. coli cell cultures also have other advantages, such as a shorter incubation time compared with cultured plant cells, no need for the addition of exogenous glucosyl donor compounds such as UDP-glucose, and almost complete conversion of the aglycone to the glucoside products. Furthermore, a homology model of PaGT3 and mutagenesis studies suggested that His-20 would be a catalytically important residue
Angiotensin II type 1 receptor blockade ameliorates tubulointerstitial injury induced by chronic potassium deficiency
Angiotensin II type 1 receptor blockade ameliorates tubulointerstitial injury induced by chronic potassium deficiency.BackgroundChronic potassium (K+) deficiency, one of the well-known causes of renal tubulointerstitial injury, is associated with an alteration in vasoactive mediators including persistent generation of renal cortical angiotensin (Ang) II despite the suppression of plasma Ang II, and suppression of urinary nitrite/nitrate excretion. We tested the hypothesis that K+-deficiency–induced renal tubulointerstitial injury could be mediated by Ang II or a reduction in nitric oxide.MethodsRats were fed a K+-deficient diet (0.01% K+) alone, or with either losartan or L-arginine (L-Arg) in drinking water. Control rats were fed with a normal K+ diet (0.36% K+). At the end of 10 weeks, kidneys were excised and renal injury was evaluated.ResultsSerum K+ was similarly depressed in all three groups receiving the K+-deficient diet. Rats on the K+-deficient diet alone developed renal hypertrophy and tubulointerstitial fibrosis with an increase in tubular osteopontin expression, macrophage infiltration and type III collagen deposition. Administration of losartan significantly reduced renal hypertrophy and prevented tubulointerstitial injury in the cortex, although some medullary injury occurred. In contrast, administration of L-Arg did not attenuate tubulointerstitial injury in the cortex, despite a complete recovery of urinary nitrate excretion. Mild but significant improvement of tubular osteopontin expression and macrophage infiltration were observed in the medulla of L-Arg-treated hypokalemic rats.ConclusionsThese results indicate that hypokalemic renal injury is mediated, at least in part, by Ang II via the Ang II type 1 receptor, with a lesser contribution mediated by a reduction in nitric oxide. Losartan may be beneficial in preventing hypokalemic tubulointerstitial injury