119 research outputs found

    Higher analogues of the discrete-time Toda equation and the quotient-difference algorithm

    Full text link
    The discrete-time Toda equation arises as a universal equation for the relevant Hankel determinants associated with one-variable orthogonal polynomials through the mechanism of adjacency, which amounts to the inclusion of shifted weight functions in the orthogonality condition. In this paper we extend this mechanism to a new class of two-variable orthogonal polynomials where the variables are related via an elliptic curve. This leads to a `Higher order Analogue of the Discrete-time Toda' (HADT) equation for the associated Hankel determinants, together with its Lax pair, which is derived from the relevant recurrence relations for the orthogonal polynomials. In a similar way as the quotient-difference (QD) algorithm is related to the discrete-time Toda equation, a novel quotient-quotient-difference (QQD) scheme is presented for the HADT equation. We show that for both the HADT equation and the QQD scheme, there exists well-posed ss-periodic initial value problems, for almost all \s\in\Z^2. From the Lax-pairs we furthermore derive invariants for corresponding reductions to dynamical mappings for some explicit examples.Comment: 38 page

    Baroeffect in gas diffusion through a capillary system

    No full text

    Flow of a maxwellian gas between two infinite parallel planes

    No full text
    corecore