7 research outputs found

    Mutational spectrum of acquired resistance to reversible versus irreversible EGFR tyrosine kinase inhibitors

    No full text
    BackgroundOver the past years, EGFR tyrosine kinase inhibitors (TKI) revolutionized treatment response. 1st-generation (reversible) EGFR TKI and later the 2nd -generation irreversible EGFR TKI Afatinib were aimed to improve treatment response. Nevertheless, diverse resistance mechanisms develop within the first year of therapy. Here, we evaluate the prevalence of acquired resistance mechanisms towards reversible and irreversible EGFR TKI.MethodsRebiopsies of patients after progression to EGFR TKI therapy (>6months) were targeted to histological and molecular analysis. Multiplexed targeted sequencing (NGS) was conducted to identify acquired resistance mutations (e.g. EGFR p.T790M). Further, Fluorescence in situ hybridisation (FISH) was applied to investigate the status of bypass mechanisms like, MET or HER2 amplification.ResultsOne hundred twenty-three rebiopsy samples of patients that underwent first-line EGFR TKI therapy (PFS >= 6months) were histologically and molecularly profiled upon clinical progression. The EGFR p.T790M mutation is the major mechanism of acquired resistance in patients treated with reversible as well as irreversible EGFR TKI. Nevertheless a statistically significant difference for the acquisition of T790M mutation has been identified: 45% of afatinib- vs 65% of reversible EGFR TKI treated patients developed a T790M mutation (p-value 0.02). Progression free survival (PFS) was comparable in patients treated with irreversible EGFR irrespective of the sensitising primary mutation or the acquisition of p.T790M.ConclusionsThe EGFR p.T790M mutation is the most prominent mechanism of resistance to reversible and irreversible EGFR TKI therapy. Nevertheless there is a statistically significant difference of p.T790M acquisition between the two types of TKI, which might be of importance for clinical therapy decision

    Genetic Heterogeneity of MET-Aberrant NSCLC and Its Impact on the Outcome of Immunotherapy

    No full text
    Introduction: Robust data on the outcome of MET-aberrant NSCLC with nontargeted therapies are limited, especially in consideration of the heterogeneity of MET-amplified tumors (METamp). Methods: A total of 337 tumor specimens of patients with MET-altered Union for International Cancer Control stage IIIB/IV NSCLC were analyzed using next-generation sequencing, fluorescence in situ hybridization, and immunohistochemistry. The evaluation focused on the type of MET aberration, co-occurring mutations, programmed death-ligand 1 expression, and overall survival (OS). Results: METamp tumors (n = 278) had a high frequency of co-occurring mutations (>80% for all amplification levels), whereas 57.6% of the 59 patients with MET gene and exon 14 (METex14) tumors had no additional mutations. In the METamp tumors, with increasing gene copy number (GCN), the frequency of inactivating TP53 mutations increased (GCN 10: 76.5%), whereas the frequency of KRAS mutations decreased (GCN 10: 11.8%). A total of 10.1% of all the METamp tumors with a GCN > 10 had a significant worse OS (4.0 mo; 95% CI: 1.9-6.0) compared with the tumors with GCN 10, and METamp GCN 10 subgroup. (c) 2020 Published by Elsevier Inc. on behalf of International Association for the Study of Lung Cancer
    corecore