13 research outputs found

    Soft chromophore featured liquid porphyrins and their utilization toward liquid electret applications

    Get PDF
    Optoelectronically active viscous liquids are ideal for fabricating foldable/stretchable electronics owing to their excellent deformability and predictable π-unit-based optoelectronic functions, which are independent of the device shape and geometry. Here we show, unprecedented 'liquid electret' devices that exhibit mechanoelectrical and electroacoustic functions, as well as stretchability, have been prepared using solvent-free liquid porphyrins. The fluidic nature of the free-base alkylated-tetraphenylporphyrins was controlled by attaching flexible and bulky branched alkyl chains at different positions. Furthermore, a subtle porphyrin ring distortion that originated from the bulkiness of alkyl chains was observed. Its consequences on the electronic perturbation of the porphyrin-unit were precisely elucidated by spectroscopic techniques and theoretical modelling. This molecular design allows shielding of the porphyrin unit by insulating alkyl chains, which facilitates its corona-charged state for a long period under ambient conditions

    Self-assembled monolayer of light-harvesting core complexes of photosynthetic bacteria on an amino-terminated ITO electrode

    Get PDF
    Light-harvesting antenna core (LH1-RC) complexes isolated from Rhodospirillum rubrum and Rhodopseudomonas palustris were successfully self-assembled on an ITO electrode modified with 3-aminopropyltriethoxysilane. Near infra-red (NIR) absorption, fluorescence, and IR spectra of these LH1-RC complexes indicated that these LH1-RC complexes on the electrode were stable on the electrode. An efficient energy transfer and photocurrent responses of these LH1-RC complexes on the electrode were observed upon illumination of the LH1 complex at 880 nm

    Flange-type liquid-level sensor based on laser light reflection

    No full text
    We report a liquid-level sensor composed of a laser, prism, and photodiode array. The sensor does not require components, such as a sensor head, inside the container that stores liquid. The sensor detects the liquid level based on the difference between the intensities of laser light reflected at the liquid/glass and air/glass interfaces. As the detected liquid level shows a shift from the correct liquid level owing to surface tension and the broadening of the laser light, we correct the shift through calculations. The sensor can be attached to a flange-type glass viewport, providing compatibility with broad-ranging containers for industrial use. The sensor can accurately detect the liquid level with a maximum error of 0.3875 ​mm. We demonstrate the implementation and operation of the liquid-level sensor using a wireless system comprising a sensor head and wireless voltmeter. The reported sensor allows accurate measurement of the liquid level in a tank inside which foreign objects such as sensor heads cannot be installed

    Improvement of the electrochromic response of a low-temperature sintered dye-modified porous electrode using low-resistivity indium tin oxide nanoparticles

    No full text
    An indium tin oxide (ITO) nanoparticle-based porous electrode sintered at low temperatures was investigated as a transparent electrode for electrochromic displays (ECDs). The electrochromic (EC) response of the dye-modified ITO porous electrode sintered at 150 °C, which exhibited a generally low resistivity, was markedly superior to that of a conventional dye-modified TiO2 porous electrode sintered at the same temperature. Moreover, the EC characteristics of the dye-modified ITO porous electrode sintered at 150 °C were better than those of the high-temperature (450 °C) sintered conventional dye-modified TiO2 porous electrode. These improvements in the EC characteristics of the dye-modified ITO porous electrode are attributed to its lower resistivity than that of the TiO2 porous electrodes. In addition to its sufficiently low resistivity attained under the sintering conditions required for flexible ECD applications, the ITO porous film had superior visible-light transparency and dye adsorption capabilities. We conclude that the process temperature, resistivity, optical transmittance, and dye adsorption capability of the ITO porous electrode make it a promising transparent porous electrode for flexible ECD applications

    Effect of positively charged particles on sputtering damage of organic electro-luminescent diodes with Mg:Ag alloy electrodes fabricated by facing target sputtering

    No full text
    We investigated the influence of the positively charged particles generated during sputtering on the performances of organic light-emitting diodes (OLEDs) with Mg:Ag alloy electrodes fabricated by sputtering. The number of positively charged particles increased by several orders of magnitude when the target current was increased from 0.1 A to 2.5 A. When a high target current was used, many positively charged particles with energies higher than the bond energy of single C–C bonds, which are typically found in organic molecules, were generated. In this situation, we observed serious OLED performance degradation. On the other hand, when a low target current was used, OLED performance degradation was not observed when the number of positively charged particles colliding with the organic underlayer increased. We concluded that sputtering damage caused by positively charged particles can be avoided by using a low target current

    Development of High Efficient Organic Thin-film Solar Cells

    No full text
    corecore