826 research outputs found

    Bandit Online Optimization Over the Permutahedron

    Full text link
    The permutahedron is the convex polytope with vertex set consisting of the vectors (Ο€(1),…,Ο€(n))(\pi(1),\dots, \pi(n)) for all permutations (bijections) Ο€\pi over {1,…,n}\{1,\dots, n\}. We study a bandit game in which, at each step tt, an adversary chooses a hidden weight weight vector sts_t, a player chooses a vertex Ο€t\pi_t of the permutahedron and suffers an observed loss of βˆ‘i=1nΟ€(i)st(i)\sum_{i=1}^n \pi(i) s_t(i). A previous algorithm CombBand of Cesa-Bianchi et al (2009) guarantees a regret of O(nTlog⁑n)O(n\sqrt{T \log n}) for a time horizon of TT. Unfortunately, CombBand requires at each step an nn-by-nn matrix permanent approximation to within improved accuracy as TT grows, resulting in a total running time that is super linear in TT, making it impractical for large time horizons. We provide an algorithm of regret O(n3/2T)O(n^{3/2}\sqrt{T}) with total time complexity O(n3T)O(n^3T). The ideas are a combination of CombBand and a recent algorithm by Ailon (2013) for online optimization over the permutahedron in the full information setting. The technical core is a bound on the variance of the Plackett-Luce noisy sorting process's "pseudo loss". The bound is obtained by establishing positive semi-definiteness of a family of 3-by-3 matrices generated from rational functions of exponentials of 3 parameters

    Unusual Low-Temperature Phase in VO2_2 Nanoparticles

    Full text link
    We present a systematic investigation of the crystal and electronic structure and the magnetic properties above and below the metal-insulator transition of ball-milled VO2_2 nanoparticles and VO2_2 microparticles. For this research, we performed a Rietveld analysis of synchrotron radiation x-ray diffraction data, O KK x-ray absorption spectroscopy, V L3L_3 resonant inelastic x-ray scattering, and magnetic susceptibility measurements. This study reveals an unusual low-temperature phase that involves the formation of an elongated and less-tilted V-V pair, a narrowed energy gap, and an induced paramagnetic contribution from the nanoparticles. We show that the change in the crystal structure is consistent with the change in the electronic states around the Fermi level, which leads us to suggest that the Peierls mechanism contributes to the energy splitting of the a1ga_{1g} state. Furthermore, we find that the high-temperature rutile structure of the nanoparticles is almost identical to that of the microparticles.Comment: 7 pages, 8 figures, 2 table
    • …
    corecore