154 research outputs found

    Optimization of detectors for the ILC

    Get PDF
    AbstractInternational Linear Collider (ILC) is a next-generation e+e− linear collider to explore Higgs, Beyond-Standard-Models, top and electroweak particles with great precision. We are optimizing our two detectors, International Large Detector (ILD) and Silicon Detector (SiD) to maximize the physics reach expected in ILC with reasonable detector cost and good reliability. The optimization study on vertex detectors, main trackers and calorimeters is underway. We aim to conclude the optimization to establish final designs in a few years, to finish detector TDR and proposal in reply to expected “green sign” of the ILC project

    Improved jet clustering algorithm with vertex information for multi-bottom final states

    Get PDF
    In collider physics at the TeV scale, there are many important processes which involve six or more jets. The sensitivity of the physics analysis depends critically on the performance of the jet clustering algorithm. We present a full detector simulation study for the ILC of our new algorithm which makes use of secondary vertices which improves the reconstruction of b jets. This algorithm will have many useful applications, such as in measurements involving a light Higgs which decays predominantly into two b quarks. We focus on the measurement of the Higgs self-coupling, which has so far proven to be challenging but is one of the most important measurements at the ILC.Comment: 7 pages, 3 figures, Proc. TIPP 201

    A study of the measurement precision of the Higgs boson decaying into tau pairs at the ILC

    Full text link
    We evaluate the measurement precision of the production cross section times the branching ratio of the Higgs boson decaying into tau lepton pairs at the International Linear Collider (ILC). We analyze various final states associated with the main production mechanisms of the Higgs boson, the Higgs-strahlung and WW-fusion processes. The statistical precision of the production cross section times the branching ratio is estimated to be 2.6% and 6.9% for the Higgs-strahlung andWW-fusion processes, respectively, with the nominal integrated luminosities assumed in the ILC Technical Design Report; the precision improves to 1.0% and 3.4% with the running scenario including possible luminosity upgrades. The study provides a reference performance of the ILC for future phenomenological analyses.Comment: 10 pages, 6 figures, 9 tables, revised from v
    corecore