13 research outputs found
Access to Parks for Youth as an Environmental Justice Issue: Access Inequalities and Possible Solutions
Although repeated contact with nature helps foster mental and physical health among young people, their contact with nature has been diminishing over the last few decades. Also, low-income and ethnic minority children have even less contact with nature than white middle-income children. In this study, we compared accessibility to play in parks for young people from different income and racial backgrounds in Denver, Colorado. Park access for children and youth was measured using a geographic information system (GIS). Each neighborhood was classified according to income level, residential density, and distance from downtown; and then each park was classified based on formal and informal play, and level of intimacy. Comparisons between neighborhoods show that that low-income neighborhoods have the lowest access and high-income neighborhoods have the highest access to parks, and that differences are even higher for parks with play amenities and high levels of intimacy. To overcome this issue, the paper proposes a framework for action to improve access to parks for low-income children and youth and to help planners, decision makers and advocacy groups prioritize park investments
Comparative multibody dynamics analysis of falls from playground climbing frames
This paper shows the utility of multibody dynamics in evaluating changes in injury related parameters of the head and lower limbs of children following falls from playground climbing frames. A particular fall case was used as a starting point to analyze the influence of surface properties, posture of the body at impact, and intermediate collisions against the climbing frame before impacting the ground. Simulations were made using the 6-year-old pedestrian MADYMO rigid body model and scaled head contact characteristics. Energy absorbing surfaces were shown to reduce injury severity parameters by up to 30-80% of those of rigid surfaces, depending on impact posture and surface. Collisions against components of a climbing frame during a fall can increase injury severity of the final impact of the head with the ground by more than 90%. Negligible changes are associated with lower limb injury risks when different surfacing materials are used. Computer reconstructions of actual falls that are intended to quantify the severity of physical injuries rely on accurate knowledge of initial conditions prior to falling, intermediate kinematics of the fall and the orientation of the body when it impacts against the ground. Multibody modelling proved to be a valuable tool to analyze the quality of eye-witness information and analyze the relative injury risk associated with changes in components influencing fall injuries from playground climbing frames. Such simulations can also support forensic investigations by evaluating alternative hypotheses for the sequence of kinematic motion of falls which result in known injuries.Deposited by bulk impor